File size: 2,534 Bytes
d788181 ea3aa2c b0d0dc5 ea3aa2c b0d0dc5 ea3aa2c b0d0dc5 ea3aa2c b0d0dc5 d788181 ea3aa2c 825bd0d ea3aa2c 825bd0d ea3aa2c 825bd0d ea3aa2c 825bd0d ea3aa2c 825bd0d aa0e62e ea3aa2c 825bd0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- go_emotions
metrics:
- f1
base_model: roberta-large
model-index:
- name: roberta-large-go-emotions-3
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: test
args: simplified
metrics:
- type: f1
value: 0.5204
name: F1
- task:
type: text-classification
name: Text Classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: validation
args: simplified
metrics:
- type: f1
value: 0.5208
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-go-emotions-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset. It achieves the following results on the test set (with a threshold of 0.15):
- Accuracy: 0.4363
- Precision: 0.4955
- Recall: 0.5655
- F1: 0.5204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Validation Loss | Accuracy | Precision | Recall | F1 |
| ------------- | ----- | --------------- | -------- | --------- | ------ | ------ |
| No log | 1.0 | 0.0889 | 0.4043 | 0.4807 | 0.4568 | 0.4446 |
| 0.1062 | 2.0 | 0.0828 | 0.4113 | 0.4608 | 0.5363 | 0.4868 |
| 0.1062 | 3.0 | 0.0813 | 0.4201 | 0.5198 | 0.5612 | 0.5227 |
| No log | 4.0 | 0.0862 | 0.4292 | 0.5012 | 0.5558 | 0.5208 |
| 0.0597 | 5.0 | 0.0924 | 0.4329 | 0.5164 | 0.5362 | 0.5151 |
| 0.0597 | 6.0 | 0.0956 | 0.4445 | 0.5241 | 0.5328 | 0.5161 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.1.0
- Tokenizers 0.12.1 |