File size: 1,506 Bytes
4f35fe7 7b381dd 84e8fae c9fae86 b28cb91 ab8a02a dcbbab8 b28cb91 fcc513f 7b381dd cc7fc08 357f677 4f35fe7 bd02b18 9da9a5d dc422aa 9da9a5d bd02b18 fb8539c bd02b18 fb8539c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
widget:
- text: These are nice flowers
- text: What the hell
- text: You really suck, dude
- text: How to put screw thread in furniture?
- text: The vacuum cleaner began to suck up the dust from the carpet, making the room much cleaner.
metrics:
- name: Accuracy
type: accuracy
value: 0.9748
- name: Precision
type: precision
value: 0.9331
- name: Recall
type: recall
value: 0.9416
- name: F1 Score
type: f1
value: 0.9373
- name: AUC-ROC
type: roc_auc
value: 0.9955
base_model: distilbert/distilbert-base-uncased
datasets:
- tarekziade/profanity
library_name: "transformers"
---
Fine-tuned model that detects profanity in text.
Inspired from https://victorzhou.com/blog/better-profanity-detection-with-scikit-learn/
The model was trained with the dataset from that project.
Usage example with Python:
```
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="tarekziade/pardonmyai")
print(classifier("These are beautiful flowers"))
```
Usage example with Transformers.js:
```
import { pipeline } from '@xenova/transformers';
let pipe = await pipeline('sentiment-analysis', model='tarekziade/pardonmyai');
let out = await pipe('These are beautiful flowers');
```
Source code and data: https://github.com/tarekziade/pardonmyai
metrics:
- Accuracy: 0.9748
- Precision: 0.9331
- Recall: 0.9416
- F1 Score: 0.9373
- AUC-ROC: 0.9955
There's a tiny version available: https://huggingface.co/tarekziade/pardonmyai-tiny
|