File size: 3,860 Bytes
aff9aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
log_dir: "Models/0413-english-39k"
save_freq: 1
log_interval: 10
device: "cuda"
epochs: 30 # number of finetuning epoch
batch_size: 8
max_len: 400 # maximum number of frames
pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth" #Models/LibriTTS/epochs_2nd_00020.pth
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
load_only_params: true # set to true if do not want to load epoch numbers and optimizer parameters
F0_path: "Utils/JDC/bst.t7"
ASR_config: "Utils/ASR/config.yml"
ASR_path: "Utils/ASR/epoch_00080.pth"
PLBERT_dir: 'Utils/PLBERT' #Utils/PLBERT、Utils/PLBERT_all_languages
data_params:
train_data: "/workspace/TTS/tts/StyleTTS2/Data/train_list_en_39k_0413.txt"
val_data: "/workspace/TTS/tts/StyleTTS2/Data/val_list_en_21k_0401.txt"
root_path: ""
OOD_data: "/workspace/TTS/tts/StyleTTS2/Data/OOD_texts_en_7k_0413.txt"
min_length: 50 # sample until texts with this size are obtained for OOD texts
preprocess_params:
sr: 24000
spect_params:
n_fft: 2048
win_length: 1200
hop_length: 300
model_params:
multispeaker: true
dim_in: 64
hidden_dim: 512
max_conv_dim: 512
n_layer: 3
n_mels: 80
n_token: 178 # number of phoneme tokens
max_dur: 50 # maximum duration of a single phoneme
style_dim: 128 # style vector size
dropout: 0.2
# config for decoder
decoder:
type: 'hifigan' # either hifigan or istftnet
resblock_kernel_sizes: [3,7,11]
upsample_rates : [10,5,3,2]
upsample_initial_channel: 512
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
upsample_kernel_sizes: [20,10,6,4]
# speech language model config
slm:
model: 'microsoft/wavlm-base-plus' # microsoft/wavlm-base-plus, facebook/wav2vec2-large-xlsr-53
sr: 16000 # sampling rate of SLM
hidden: 768 # hidden size of SLM,本来为768,xlsr为1024
nlayers: 13 # number of layers of SLM,本来为13,xlsr为25
initial_channel: 64 # initial channels of SLM discriminator head
# style diffusion model config
diffusion:
embedding_mask_proba: 0.1
# transformer config
transformer:
num_layers: 3
num_heads: 8
head_features: 64
multiplier: 2
# diffusion distribution config
dist:
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
mean: -3.0
std: 1.0
loss_params:
lambda_mel: 5. # mel reconstruction loss
lambda_gen: 1. # generator loss
lambda_slm: 1. # slm feature matching loss,本来为1
lambda_mono: 1. # monotonic alignment loss (TMA)
lambda_s2s: 1. # sequence-to-sequence loss (TMA)
lambda_F0: 1. # F0 reconstruction loss
lambda_norm: 1. # norm reconstruction loss
lambda_dur: 1. # duration loss
lambda_ce: 20. # duration predictor probability output CE loss
lambda_sty: 1. # style reconstruction loss
lambda_diff: 1. # score matching loss
diff_epoch: 2 # style diffusion starting epoch
joint_epoch: 4 # joint training starting epoch
optimizer_params:
lr: 0.00005 # general learning rate,原本为0.0001
bert_lr: 0.000005 # learning rate for PLBERT,原本为0.00001
ft_lr: 0.000005 # learning rate for acoustic modules,原本为0.0001,libritts为0.00001
slmadv_params:
min_len: 400 # minimum length of samples
max_len: 500 # maximum length of samples
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
iter: 20 # update the discriminator every this iterations of generator update,libritts为20
thresh: 5 # gradient norm above which the gradient is scaled
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
sig: 1.5 # sigma for differentiable duration modeling
|