File size: 4,247 Bytes
9ba2e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
library_name: peft
base_model: oopsung/llama2-7b-koNqa-test-v1
tags:
- axolotl
- generated_from_trainer
datasets:
- 7897b36af6847987_train_data.json
model-index:
- name: test-llama2-7b-koNqa-test-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
adapter: lora
base_model: oopsung/llama2-7b-koNqa-test-v1
bf16: auto
data_collator:
  max_length: 8192
  padding: true
  type: dynamic_padding
dataset_prepared_path: null
datasets:
- data_files:
  - 7897b36af6847987_train_data.json
  ds_type: json
  format: custom
  path: 7897b36af6847987_train_data.json
  preprocessing:
  - shuffle: true
  type:
    field: null
    field_input: null
    field_instruction: mood
    field_output: lyrics
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/test-llama2-7b-koNqa-test-v1
learning_rate: 0.0001980900647573094
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 600
micro_batch_size: 8
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda_test-llama2-7b-koNqa-test-v1
resume_from_checkpoint: null
s2_attention: null
save_safetensors: true
save_steps: 0.15
save_total_limit: 1
seed: 26232
special_tokens: null
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda_test-llama2-7b-koNqa-test-v1
wandb_project: subnet56-test
wandb_runid: taopanda_test-llama2-7b-koNqa-test-v1
wandb_watch: null
warmup_ratio: 0.06
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# test-llama2-7b-koNqa-test-v1

This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the 7897b36af6847987_train_data.json dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001980900647573094
- train_batch_size: 8
- eval_batch_size: 8
- seed: 26232
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 205

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0028        | 0.0098 | 1    | 2.0533          |
| 1.7152        | 0.2543 | 26   | 1.6692          |
| 1.5552        | 0.5086 | 52   | 1.6252          |
| 1.648         | 0.7628 | 78   | 1.6017          |
| 1.5565        | 1.0098 | 104  | 1.5852          |
| 1.5165        | 1.2641 | 130  | 1.5732          |
| 1.5192        | 1.5183 | 156  | 1.5643          |
| 1.5389        | 1.7726 | 182  | 1.5600          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0