File size: 3,808 Bytes
9bbb835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: AIRI-Institute/gena-lm-bigbird-base-t2t
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: gena-lm-bigbird-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gena-lm-bigbird-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [AIRI-Institute/gena-lm-bigbird-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bigbird-base-t2t) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4425
- F1 Score: 0.8721
- Precision: 0.8249
- Recall: 0.9251
- Accuracy: 0.8582
- Auc: 0.9367
- Prc: 0.9328

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5218        | 0.0840 | 500  | 0.4577          | 0.7891   | 0.8196    | 0.7608 | 0.7874   | 0.8723 | 0.8607 |
| 0.4698        | 0.1680 | 1000 | 0.4514          | 0.8273   | 0.7836    | 0.8762 | 0.8087   | 0.8879 | 0.8785 |
| 0.448         | 0.2521 | 1500 | 0.4550          | 0.8350   | 0.8002    | 0.8730 | 0.8197   | 0.8978 | 0.8886 |
| 0.4463        | 0.3361 | 2000 | 0.4247          | 0.8392   | 0.7616    | 0.9344 | 0.8128   | 0.9076 | 0.9047 |
| 0.4264        | 0.4201 | 2500 | 0.4020          | 0.8010   | 0.8781    | 0.7364 | 0.8087   | 0.9130 | 0.9101 |
| 0.401         | 0.5041 | 3000 | 0.3818          | 0.8560   | 0.7897    | 0.9344 | 0.8356   | 0.9223 | 0.9200 |
| 0.4035        | 0.5881 | 3500 | 0.3980          | 0.8590   | 0.7956    | 0.9335 | 0.8398   | 0.9232 | 0.9183 |
| 0.3774        | 0.6722 | 4000 | 0.3752          | 0.8543   | 0.8404    | 0.8685 | 0.8450   | 0.9259 | 0.9245 |
| 0.3985        | 0.7562 | 4500 | 0.4618          | 0.8360   | 0.8660    | 0.8081 | 0.8343   | 0.9243 | 0.9251 |
| 0.387         | 0.8402 | 5000 | 0.3753          | 0.8641   | 0.8377    | 0.8923 | 0.8533   | 0.9310 | 0.9299 |
| 0.3907        | 0.9242 | 5500 | 0.3589          | 0.8537   | 0.8528    | 0.8547 | 0.8469   | 0.9284 | 0.9284 |
| 0.3775        | 1.0082 | 6000 | 0.4544          | 0.8622   | 0.8517    | 0.8730 | 0.8541   | 0.9310 | 0.9296 |
| 0.3507        | 1.0923 | 6500 | 0.4114          | 0.8722   | 0.8177    | 0.9344 | 0.8568   | 0.9326 | 0.9246 |
| 0.3476        | 1.1763 | 7000 | 0.4028          | 0.8747   | 0.8442    | 0.9074 | 0.8640   | 0.9354 | 0.9348 |
| 0.3676        | 1.2603 | 7500 | 0.3671          | 0.8684   | 0.8487    | 0.8891 | 0.8592   | 0.9362 | 0.9358 |
| 0.3651        | 1.3443 | 8000 | 0.3837          | 0.8713   | 0.8418    | 0.9029 | 0.8605   | 0.9369 | 0.9364 |
| 0.3468        | 1.4283 | 8500 | 0.4281          | 0.8648   | 0.8491    | 0.8811 | 0.8560   | 0.9342 | 0.9309 |
| 0.3447        | 1.5124 | 9000 | 0.3955          | 0.8727   | 0.8171    | 0.9364 | 0.8571   | 0.9387 | 0.9380 |
| 0.35          | 1.5964 | 9500 | 0.4425          | 0.8721   | 0.8249    | 0.9251 | 0.8582   | 0.9367 | 0.9328 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0