tanoManzo's picture
End of training
2535d3b verified
metadata
base_model: zhihan1996/DNABERT-2-117M
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC
    results: []

DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of zhihan1996/DNABERT-2-117M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4809
  • F1 Score: 0.8080
  • Precision: 0.7661
  • Recall: 0.8546
  • Accuracy: 0.7770
  • Mcc Score: 0.5487
  • Roc Auc Score: 0.7686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Mcc Score Roc Auc Score
0.4948 1.4881 500 0.5034 0.7825 0.7980 0.7677 0.7658 0.5296 0.7656
0.4623 2.9762 1000 0.4809 0.8080 0.7661 0.8546 0.7770 0.5487 0.7686

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0