File size: 1,882 Bytes
2535d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: zhihan1996/DNABERT-2-117M
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4809
- F1 Score: 0.8080
- Precision: 0.7661
- Recall: 0.8546
- Accuracy: 0.7770
- Mcc Score: 0.5487
- Roc Auc Score: 0.7686

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Mcc Score | Roc Auc Score |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:---------:|:-------------:|
| 0.4948        | 1.4881 | 500  | 0.5034          | 0.7825   | 0.7980    | 0.7677 | 0.7658   | 0.5296    | 0.7656        |
| 0.4623        | 2.9762 | 1000 | 0.4809          | 0.8080   | 0.7661    | 0.8546 | 0.7770   | 0.5487    | 0.7686        |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0