talli96123's picture
End of training
cbd7582 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: meat_calssify_fresh_crop_V_0_1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7741935483870968

meat_calssify_fresh_crop_V_0_1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5238
  • Accuracy: 0.7742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9291 1.0 617 1.0099 0.5613
1.0473 2.0 1234 1.2180 0.4323
0.7998 3.0 1851 1.0517 0.5548
1.21 4.0 2468 1.3208 0.4968
1.0814 5.0 3085 1.3423 0.5290
1.4674 6.0 3702 1.5941 0.5419
0.0633 7.0 4319 1.6778 0.5548
0.8345 8.0 4936 1.4949 0.5419
1.6888 9.0 5553 1.6784 0.4581
1.0997 10.0 6170 1.9437 0.5097
1.6235 11.0 6787 1.0796 0.6194
1.3159 12.0 7404 1.7363 0.5935
0.5513 13.0 8021 1.6918 0.6387
0.4463 14.0 8638 1.8225 0.5742
0.0455 15.0 9255 1.6463 0.6258
0.5906 16.0 9872 2.0199 0.6065
0.6373 17.0 10489 1.7233 0.6516
1.0226 18.0 11106 1.4137 0.6710
1.0566 19.0 11723 1.3841 0.7097
0.3117 20.0 12340 1.9925 0.6258
0.3041 21.0 12957 1.6802 0.6710
1.0978 22.0 13574 1.8269 0.6323
1.0631 23.0 14191 1.7333 0.6645
0.0039 24.0 14808 1.8621 0.6645
0.0018 25.0 15425 2.1279 0.6258
0.2373 26.0 16042 1.6896 0.7032
0.5993 27.0 16659 1.8411 0.6710
0.0021 28.0 17276 1.9047 0.6645
0.0401 29.0 17893 1.7597 0.7226
0.3687 30.0 18510 2.2599 0.6387
0.2841 31.0 19127 2.0735 0.6581
0.5707 32.0 19744 1.9316 0.6581
0.46 33.0 20361 2.1935 0.6452
0.7589 34.0 20978 1.5770 0.7355
0.0008 35.0 21595 1.7779 0.7226
0.0005 36.0 22212 2.0994 0.6774
0.0114 37.0 22829 1.7210 0.7161
0.4071 38.0 23446 2.2015 0.6839
0.0007 39.0 24063 1.8165 0.7161
0.0005 40.0 24680 1.8461 0.7032
0.0005 41.0 25297 1.9554 0.7032
0.7269 42.0 25914 1.6843 0.7355
0.0008 43.0 26531 1.9346 0.7032
0.5102 44.0 27148 1.7949 0.7161
1.1679 45.0 27765 1.7431 0.7484
0.151 46.0 28382 1.7899 0.7355
0.0004 47.0 28999 1.5098 0.7548
0.0003 48.0 29616 1.7388 0.7419
0.0003 49.0 30233 1.5232 0.7677
0.0003 50.0 30850 1.5238 0.7742

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.2
  • Tokenizers 0.19.1