File size: 2,057 Bytes
e5bbd67 af6db24 2489de7 af6db24 e5bbd67 2489de7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language: ["ru"]
tags:
- russian
- pretraining
- Text classification
license: mit
---
# multilabel-context-russian-inapropriate-messages
[BERT classifier from Skoltech](https://huggingface.co/Skoltech/russian-inappropriate-messages), finetuned on contextual data with 4 labels.
# Training
*Skoltech/russian-inappropriate-messages* was finetuned on a multiclass data with four classes
1) OK label -- the message is OK in context and does not intent to offend or somehow harm the reputation of a speaker.
2) Toxic label -- the message might be seen as a offensive one in given context.
3) Severe toxic label -- the message is offencive, full of anger and was written to provoke a fight or any other discomfort
4) Risks label -- the message touches on sensitive topics and can harm the reputation of the speaker (i.e. religion, politics)
The model was finetuned on DATASET_LINK.
# Evaluation results
Model achieves the following results:
| | OK - Precision | OK - Recall | OK - F1-score | TOXIC - Precision | TOXIC - Recall | TOXIC - F1-score | SEVERE TOXIC - Precision | SEVERE TOXIC - Recall | SEVERE TOXIC - F1-score | RISKS - Precision | RISKS - Recall | RISKS - F1-score |
|-------------------------|----------------|-------------|---------------|-------------------|----------------|------------------|--------------------------|-----------------------|-------------------------|-------------------|----------------|------------------|
| DATASET_TWITTER val.csv | 0.883 | 0.913 | 0.896 | 0.368 | 0.330 | 0.348 | 0.515 | 0.468 | 0.490 | 0.659 | 0.535 | 0.591 |
| DATASET_GENA val.csv | 0.953 | 0.927 | 0.940 | 0.260 | 0.343 | 0.295 | 0.666 | 0.806 | 0.729 | 0.523 | 0.423 | 0.46 |
The work was done during internship at Tinkoff.
|