|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vit-base-patch16-224-in21k_covid_19_ct_scans |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9010416666666666 |
|
- name: F1 |
|
type: f1 |
|
value: 0.473972602739726 |
|
- name: Recall |
|
type: recall |
|
value: 0.9942528735632183 |
|
- name: Precision |
|
type: precision |
|
value: 0.9057591623036649 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-in21k_covid_19_ct_scans |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6385 |
|
- Accuracy: 0.9010 |
|
- F1: 0.4740 |
|
- Auc: 0.4971 |
|
- Recall: 0.9943 |
|
- Precision: 0.9058 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:---------:| |
|
| 0.7218 | 1.0 | 55 | 0.3383 | 0.9062 | 0.4754 | 0.5 | 1.0 | 0.9062 | |
|
| 0.7218 | 2.0 | 110 | 0.3823 | 0.9062 | 0.4754 | 0.5 | 1.0 | 0.9062 | |
|
| 0.7218 | 3.0 | 165 | 0.3957 | 0.9062 | 0.4754 | 0.5 | 1.0 | 0.9062 | |
|
| 0.7218 | 4.0 | 220 | 0.4485 | 0.9062 | 0.4754 | 0.5 | 1.0 | 0.9062 | |
|
| 0.7218 | 5.0 | 275 | 0.4786 | 0.8958 | 0.4725 | 0.4943 | 0.9885 | 0.9053 | |
|
| 0.7218 | 6.0 | 330 | 0.5316 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.7218 | 7.0 | 385 | 0.5539 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.7218 | 8.0 | 440 | 0.5800 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.7218 | 9.0 | 495 | 0.5977 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 10.0 | 550 | 0.6110 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 11.0 | 605 | 0.6211 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 12.0 | 660 | 0.6288 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 13.0 | 715 | 0.6341 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 14.0 | 770 | 0.6374 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
| 0.0987 | 15.0 | 825 | 0.6385 | 0.9010 | 0.4740 | 0.4971 | 0.9943 | 0.9058 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|