|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vit-base-patch16-224-in21k_covid_19_ct_scans |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9765258215962441 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9294374875770225 |
|
- name: Recall |
|
type: recall |
|
value: 1.0 |
|
- name: Precision |
|
type: precision |
|
value: 0.9744897959183674 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-in21k_covid_19_ct_scans |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1064 |
|
- Accuracy: 0.9765 |
|
- F1: 0.9294 |
|
- Auc: 0.8864 |
|
- Recall: 1.0 |
|
- Precision: 0.9745 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:---------:| |
|
| 0.6804 | 1.0 | 54 | 0.3821 | 0.8967 | 0.4728 | 0.5 | 1.0 | 0.8967 | |
|
| 0.6804 | 2.0 | 108 | 0.4134 | 0.8967 | 0.4728 | 0.5 | 1.0 | 0.8967 | |
|
| 0.6804 | 3.0 | 162 | 0.2708 | 0.9061 | 0.5585 | 0.5455 | 1.0 | 0.9052 | |
|
| 0.6804 | 4.0 | 216 | 0.2405 | 0.9437 | 0.7973 | 0.7273 | 1.0 | 0.9409 | |
|
| 0.6804 | 5.0 | 270 | 0.2193 | 0.9437 | 0.7973 | 0.7273 | 1.0 | 0.9409 | |
|
| 0.6804 | 6.0 | 324 | 0.1719 | 0.9484 | 0.8775 | 0.9310 | 0.9529 | 0.9891 | |
|
| 0.6804 | 7.0 | 378 | 0.0525 | 0.9859 | 0.9612 | 0.9519 | 0.9948 | 0.9896 | |
|
| 0.6804 | 8.0 | 432 | 0.0482 | 0.9906 | 0.9736 | 0.9545 | 1.0 | 0.9896 | |
|
| 0.6804 | 9.0 | 486 | 0.0907 | 0.9765 | 0.9294 | 0.8864 | 1.0 | 0.9745 | |
|
| 0.1258 | 10.0 | 540 | 0.1009 | 0.9765 | 0.9294 | 0.8864 | 1.0 | 0.9745 | |
|
| 0.1258 | 11.0 | 594 | 0.1051 | 0.9765 | 0.9294 | 0.8864 | 1.0 | 0.9745 | |
|
| 0.1258 | 12.0 | 648 | 0.1064 | 0.9765 | 0.9294 | 0.8864 | 1.0 | 0.9745 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|