|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-RCC |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-RCC |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3526 |
|
- Accuracy: 0.8226 |
|
- Precision: 0.9245 |
|
- Recall: 0.875 |
|
- F1: 0.5829 |
|
- Auc: 0.6042 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| No log | 1.0 | 7 | 0.3296 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.4795 | 2.0 | 14 | 0.3129 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.2503 | 3.0 | 21 | 0.3182 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.2503 | 4.0 | 28 | 0.2973 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.2231 | 5.0 | 35 | 0.3275 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.1791 | 6.0 | 42 | 0.3147 | 0.9032 | 0.9032 | 1.0 | 0.4746 | 0.5 | |
|
| 0.1791 | 7.0 | 49 | 0.3401 | 0.8978 | 0.9071 | 0.9881 | 0.5206 | 0.5218 | |
|
| 0.1361 | 8.0 | 56 | 0.3885 | 0.7849 | 0.9211 | 0.8333 | 0.5529 | 0.5833 | |
|
| 0.1245 | 9.0 | 63 | 0.3192 | 0.8817 | 0.9195 | 0.9524 | 0.6012 | 0.5873 | |
|
| 0.0902 | 10.0 | 70 | 0.3526 | 0.8226 | 0.9245 | 0.875 | 0.5829 | 0.6042 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|