synergyai-jaeung's picture
Model save
db5a405 verified
|
raw
history blame
2.68 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-RCC
    results: []

swin-tiny-patch4-window7-224-finetuned-RCC

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3526
  • Accuracy: 0.8226
  • Precision: 0.9245
  • Recall: 0.875
  • F1: 0.5829
  • Auc: 0.6042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
No log 1.0 7 0.3296 0.9032 0.9032 1.0 0.4746 0.5
0.4795 2.0 14 0.3129 0.9032 0.9032 1.0 0.4746 0.5
0.2503 3.0 21 0.3182 0.9032 0.9032 1.0 0.4746 0.5
0.2503 4.0 28 0.2973 0.9032 0.9032 1.0 0.4746 0.5
0.2231 5.0 35 0.3275 0.9032 0.9032 1.0 0.4746 0.5
0.1791 6.0 42 0.3147 0.9032 0.9032 1.0 0.4746 0.5
0.1791 7.0 49 0.3401 0.8978 0.9071 0.9881 0.5206 0.5218
0.1361 8.0 56 0.3885 0.7849 0.9211 0.8333 0.5529 0.5833
0.1245 9.0 63 0.3192 0.8817 0.9195 0.9524 0.6012 0.5873
0.0902 10.0 70 0.3526 0.8226 0.9245 0.875 0.5829 0.6042

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1