File size: 10,618 Bytes
ed0f6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e386e3
 
 
ed0f6c9
 
 
 
 
 
 
 
0e386e3
 
 
 
 
ed0f6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: apache-2.0
base_model: google/byt5-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: byt5-finetuned-indocollex-informal-to-formal
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Byt5-base Finetuned IndoCollex Informal to Formal

This model is a fine-tuned version of [google/byt5-base](https://huggingface.co/google/byt5-base) on on [IndoCollex dataset](https://github.com/haryoa/indo-collex) on informal-formal transformation.

It achieves the following results on the evaluation set:
- Loss: 0.2191
- Cer: 0.208
- Wer: 0.5286
- Word Acc: 0.4714
- Gen Len: 7.7486

On test set, it achieves following results :
- CER: 0.2589
- WER: 0.575
- Word Accuracy: 0.425

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    | Wer    | Word Acc | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:-------:|
| No log        | 1.0   | 93   | 15.6714         | 2.1749 | 2.0857 | -1.0857  | 19.0    |
| No log        | 2.0   | 186  | 12.9426         | 2.1265 | 1.6619 | -0.6619  | 19.0    |
| No log        | 3.0   | 279  | 9.8664          | 1.9525 | 1.0524 | -0.0524  | 17.8343 |
| No log        | 4.0   | 372  | 4.9424          | 1.0051 | 1.0    | 0.0      | 0.1086  |
| No log        | 5.0   | 465  | 3.8691          | 0.5688 | 0.9667 | 0.0333   | 6.8171  |
| 11.8639       | 6.0   | 558  | 3.0433          | 0.5161 | 0.9619 | 0.0381   | 6.1486  |
| 11.8639       | 7.0   | 651  | 1.1874          | 0.5374 | 0.9619 | 0.0381   | 5.9143  |
| 11.8639       | 8.0   | 744  | 0.5482          | 0.5756 | 0.9714 | 0.0286   | 7.2457  |
| 11.8639       | 9.0   | 837  | 0.4749          | 0.5195 | 0.9476 | 0.0524   | 7.1771  |
| 11.8639       | 10.0  | 930  | 0.3678          | 0.3591 | 0.8952 | 0.1048   | 7.0286  |
| 1.4703        | 11.0  | 1023 | 0.3154          | 0.2988 | 0.8524 | 0.1476   | 7.0343  |
| 1.4703        | 12.0  | 1116 | 0.2753          | 0.2895 | 0.819  | 0.181    | 7.3314  |
| 1.4703        | 13.0  | 1209 | 0.2561          | 0.2674 | 0.7667 | 0.2333   | 7.1543  |
| 1.4703        | 14.0  | 1302 | 0.2386          | 0.2581 | 0.7667 | 0.2333   | 7.3657  |
| 1.4703        | 15.0  | 1395 | 0.2249          | 0.2453 | 0.7429 | 0.2571   | 7.4629  |
| 1.4703        | 16.0  | 1488 | 0.2163          | 0.2428 | 0.7286 | 0.2714   | 7.4514  |
| 0.3131        | 17.0  | 1581 | 0.2093          | 0.2538 | 0.7286 | 0.2714   | 7.4743  |
| 0.3131        | 18.0  | 1674 | 0.2027          | 0.2436 | 0.7143 | 0.2857   | 7.6057  |
| 0.3131        | 19.0  | 1767 | 0.1986          | 0.2453 | 0.7    | 0.3      | 7.6229  |
| 0.3131        | 20.0  | 1860 | 0.1923          | 0.2453 | 0.6952 | 0.3048   | 7.6571  |
| 0.3131        | 21.0  | 1953 | 0.1907          | 0.2411 | 0.6667 | 0.3333   | 7.5829  |
| 0.2093        | 22.0  | 2046 | 0.1876          | 0.2368 | 0.6571 | 0.3429   | 7.6171  |
| 0.2093        | 23.0  | 2139 | 0.1889          | 0.2351 | 0.6476 | 0.3524   | 7.5543  |
| 0.2093        | 24.0  | 2232 | 0.1864          | 0.2334 | 0.6429 | 0.3571   | 7.6     |
| 0.2093        | 25.0  | 2325 | 0.1802          | 0.2284 | 0.6238 | 0.3762   | 7.6     |
| 0.2093        | 26.0  | 2418 | 0.1786          | 0.2292 | 0.6381 | 0.3619   | 7.6     |
| 0.1641        | 27.0  | 2511 | 0.1760          | 0.2182 | 0.6286 | 0.3714   | 7.56    |
| 0.1641        | 28.0  | 2604 | 0.1769          | 0.2199 | 0.6143 | 0.3857   | 7.6057  |
| 0.1641        | 29.0  | 2697 | 0.1735          | 0.225  | 0.619  | 0.381    | 7.6114  |
| 0.1641        | 30.0  | 2790 | 0.1764          | 0.2207 | 0.6    | 0.4      | 7.6057  |
| 0.1641        | 31.0  | 2883 | 0.1727          | 0.208  | 0.5952 | 0.4048   | 7.5943  |
| 0.1641        | 32.0  | 2976 | 0.1735          | 0.208  | 0.5905 | 0.4095   | 7.64    |
| 0.1336        | 33.0  | 3069 | 0.1694          | 0.2063 | 0.581  | 0.419    | 7.6743  |
| 0.1336        | 34.0  | 3162 | 0.1728          | 0.2114 | 0.5857 | 0.4143   | 7.6914  |
| 0.1336        | 35.0  | 3255 | 0.1722          | 0.2207 | 0.5857 | 0.4143   | 7.64    |
| 0.1336        | 36.0  | 3348 | 0.1703          | 0.2224 | 0.6    | 0.4      | 7.6857  |
| 0.1336        | 37.0  | 3441 | 0.1715          | 0.2173 | 0.581  | 0.419    | 7.6629  |
| 0.1115        | 38.0  | 3534 | 0.1735          | 0.2148 | 0.5762 | 0.4238   | 7.68    |
| 0.1115        | 39.0  | 3627 | 0.1715          | 0.2088 | 0.5762 | 0.4238   | 7.7143  |
| 0.1115        | 40.0  | 3720 | 0.1754          | 0.2131 | 0.5714 | 0.4286   | 7.72    |
| 0.1115        | 41.0  | 3813 | 0.1757          | 0.2122 | 0.5524 | 0.4476   | 7.76    |
| 0.1115        | 42.0  | 3906 | 0.1725          | 0.2122 | 0.5571 | 0.4429   | 7.7714  |
| 0.1115        | 43.0  | 3999 | 0.1724          | 0.2173 | 0.5619 | 0.4381   | 7.76    |
| 0.0954        | 44.0  | 4092 | 0.1799          | 0.2071 | 0.5429 | 0.4571   | 7.7371  |
| 0.0954        | 45.0  | 4185 | 0.1771          | 0.2097 | 0.5524 | 0.4476   | 7.7657  |
| 0.0954        | 46.0  | 4278 | 0.1780          | 0.2063 | 0.5476 | 0.4524   | 7.72    |
| 0.0954        | 47.0  | 4371 | 0.1791          | 0.2088 | 0.5381 | 0.4619   | 7.7714  |
| 0.0954        | 48.0  | 4464 | 0.1799          | 0.2105 | 0.5429 | 0.4571   | 7.7486  |
| 0.0814        | 49.0  | 4557 | 0.1799          | 0.2054 | 0.5333 | 0.4667   | 7.7657  |
| 0.0814        | 50.0  | 4650 | 0.1830          | 0.2037 | 0.5381 | 0.4619   | 7.6971  |
| 0.0814        | 51.0  | 4743 | 0.1824          | 0.2088 | 0.5429 | 0.4571   | 7.76    |
| 0.0814        | 52.0  | 4836 | 0.1846          | 0.2037 | 0.5286 | 0.4714   | 7.7771  |
| 0.0814        | 53.0  | 4929 | 0.1837          | 0.2046 | 0.5286 | 0.4714   | 7.7429  |
| 0.073         | 54.0  | 5022 | 0.1816          | 0.2054 | 0.5333 | 0.4667   | 7.7943  |
| 0.073         | 55.0  | 5115 | 0.1825          | 0.2029 | 0.519  | 0.481    | 7.7771  |
| 0.073         | 56.0  | 5208 | 0.1870          | 0.208  | 0.5286 | 0.4714   | 7.7829  |
| 0.073         | 57.0  | 5301 | 0.1870          | 0.2105 | 0.5381 | 0.4619   | 7.7829  |
| 0.073         | 58.0  | 5394 | 0.1932          | 0.2054 | 0.5286 | 0.4714   | 7.7543  |
| 0.073         | 59.0  | 5487 | 0.1880          | 0.2046 | 0.5143 | 0.4857   | 7.7886  |
| 0.0653        | 60.0  | 5580 | 0.1890          | 0.2071 | 0.519  | 0.481    | 7.7714  |
| 0.0653        | 61.0  | 5673 | 0.1952          | 0.2105 | 0.5286 | 0.4714   | 7.7886  |
| 0.0653        | 62.0  | 5766 | 0.1940          | 0.2054 | 0.5238 | 0.4762   | 7.8     |
| 0.0653        | 63.0  | 5859 | 0.1948          | 0.2063 | 0.5143 | 0.4857   | 7.7829  |
| 0.0653        | 64.0  | 5952 | 0.1972          | 0.208  | 0.5238 | 0.4762   | 7.7943  |
| 0.0582        | 65.0  | 6045 | 0.1965          | 0.2046 | 0.5238 | 0.4762   | 7.7543  |
| 0.0582        | 66.0  | 6138 | 0.1968          | 0.2046 | 0.5095 | 0.4905   | 7.7657  |
| 0.0582        | 67.0  | 6231 | 0.1981          | 0.2071 | 0.519  | 0.481    | 7.7886  |
| 0.0582        | 68.0  | 6324 | 0.1977          | 0.2063 | 0.519  | 0.481    | 7.7771  |
| 0.0582        | 69.0  | 6417 | 0.2018          | 0.2054 | 0.5238 | 0.4762   | 7.7657  |
| 0.0522        | 70.0  | 6510 | 0.1992          | 0.2088 | 0.5286 | 0.4714   | 7.7657  |
| 0.0522        | 71.0  | 6603 | 0.1999          | 0.2131 | 0.5381 | 0.4619   | 7.7714  |
| 0.0522        | 72.0  | 6696 | 0.1998          | 0.2173 | 0.5429 | 0.4571   | 7.7943  |
| 0.0522        | 73.0  | 6789 | 0.1991          | 0.2156 | 0.5381 | 0.4619   | 7.7829  |
| 0.0522        | 74.0  | 6882 | 0.2024          | 0.2088 | 0.5333 | 0.4667   | 7.72    |
| 0.0522        | 75.0  | 6975 | 0.2053          | 0.2046 | 0.5286 | 0.4714   | 7.7257  |
| 0.0494        | 76.0  | 7068 | 0.2055          | 0.2054 | 0.5333 | 0.4667   | 7.7429  |
| 0.0494        | 77.0  | 7161 | 0.2064          | 0.208  | 0.5333 | 0.4667   | 7.7029  |
| 0.0494        | 78.0  | 7254 | 0.2057          | 0.208  | 0.5286 | 0.4714   | 7.7257  |
| 0.0494        | 79.0  | 7347 | 0.2087          | 0.2097 | 0.5381 | 0.4619   | 7.68    |
| 0.0494        | 80.0  | 7440 | 0.2085          | 0.2131 | 0.5476 | 0.4524   | 7.6971  |
| 0.0462        | 81.0  | 7533 | 0.2099          | 0.2122 | 0.5476 | 0.4524   | 7.6914  |
| 0.0462        | 82.0  | 7626 | 0.2090          | 0.2071 | 0.5286 | 0.4714   | 7.7429  |
| 0.0462        | 83.0  | 7719 | 0.2127          | 0.2088 | 0.5286 | 0.4714   | 7.7086  |
| 0.0462        | 84.0  | 7812 | 0.2135          | 0.2012 | 0.519  | 0.481    | 7.7371  |
| 0.0462        | 85.0  | 7905 | 0.2148          | 0.2029 | 0.519  | 0.481    | 7.7486  |
| 0.0462        | 86.0  | 7998 | 0.2148          | 0.2046 | 0.5238 | 0.4762   | 7.7657  |
| 0.0434        | 87.0  | 8091 | 0.2148          | 0.2029 | 0.519  | 0.481    | 7.7543  |
| 0.0434        | 88.0  | 8184 | 0.2150          | 0.2037 | 0.519  | 0.481    | 7.7657  |
| 0.0434        | 89.0  | 8277 | 0.2160          | 0.2063 | 0.5238 | 0.4762   | 7.7543  |
| 0.0434        | 90.0  | 8370 | 0.2167          | 0.2054 | 0.5238 | 0.4762   | 7.7486  |
| 0.0434        | 91.0  | 8463 | 0.2168          | 0.2037 | 0.519  | 0.481    | 7.7657  |
| 0.0419        | 92.0  | 8556 | 0.2172          | 0.2037 | 0.5238 | 0.4762   | 7.7543  |
| 0.0419        | 93.0  | 8649 | 0.2183          | 0.2037 | 0.5238 | 0.4762   | 7.7486  |
| 0.0419        | 94.0  | 8742 | 0.2190          | 0.2063 | 0.5286 | 0.4714   | 7.7371  |
| 0.0419        | 95.0  | 8835 | 0.2185          | 0.2054 | 0.5238 | 0.4762   | 7.7543  |
| 0.0419        | 96.0  | 8928 | 0.2184          | 0.2054 | 0.5238 | 0.4762   | 7.7543  |
| 0.0402        | 97.0  | 9021 | 0.2190          | 0.208  | 0.5286 | 0.4714   | 7.7429  |
| 0.0402        | 98.0  | 9114 | 0.2189          | 0.208  | 0.5286 | 0.4714   | 7.7486  |
| 0.0402        | 99.0  | 9207 | 0.2190          | 0.208  | 0.5286 | 0.4714   | 7.7486  |
| 0.0402        | 100.0 | 9300 | 0.2191          | 0.208  | 0.5286 | 0.4714   | 7.7486  |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3