|
import os |
|
import struct |
|
import sys |
|
|
|
import torch |
|
from transformers import AutoConfig, AutoTokenizer |
|
|
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) |
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
|
|
cs = [chr(n) for n in cs] |
|
|
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def count_model_parts(dir_model: str) -> int: |
|
"""Returns the number of model parts in the model directory.""" |
|
num_parts = 0 |
|
for filename in os.listdir(dir_model): |
|
if filename.startswith("pytorch_model-"): |
|
num_parts += 1 |
|
|
|
if num_parts > 0: |
|
print(f"Found {num_parts} model parts in {dir_model}") |
|
return num_parts |
|
|
|
|
|
if len(sys.argv) < 3: |
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") |
|
print(" ftype == 0 -> float32") |
|
print(" ftype == 1 -> float16") |
|
sys.exit(1) |
|
|
|
|
|
|
|
dir_model = sys.argv[1] |
|
|
|
num_parts = count_model_parts(dir_model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if len(sys.argv) > 2: |
|
ftype = int(sys.argv[2]) |
|
if ftype < 0 or ftype > 1: |
|
print("Invalid ftype: " + str(ftype)) |
|
sys.exit(1) |
|
fname_out = dir_model + "/ggml-model-" + ftype_str[ftype] + ".bin" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) |
|
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True) |
|
hparams = config.to_dict() |
|
|
|
fout = open(fname_out, "wb") |
|
|
|
fout.write(struct.pack("i", 0x67676D6C)) |
|
fout.write(struct.pack("i", hparams["d_model"])) |
|
fout.write(struct.pack("i", hparams["max_seq_len"])) |
|
fout.write(struct.pack("i", hparams["n_heads"])) |
|
fout.write(struct.pack("i", hparams["n_layers"])) |
|
fout.write(struct.pack("i", hparams["vocab_size"])) |
|
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"])) |
|
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0)) |
|
fout.write(struct.pack("i", ftype)) |
|
|
|
vocab_size = hparams["vocab_size"] |
|
|
|
encoder = tokenizer.vocab |
|
|
|
encoder.update(tokenizer.get_added_vocab()) |
|
|
|
byte_encoder = bytes_to_unicode() |
|
byte_decoder = {v: k for k, v in byte_encoder.items()} |
|
|
|
counter = 0 |
|
|
|
for key in sorted(encoder, key=encoder.get): |
|
|
|
text = "" |
|
for c in key: |
|
if c not in byte_decoder: |
|
text += c |
|
else: |
|
text += chr(byte_decoder[c]) |
|
text = bytearray(text, encoding="utf-8") |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
|
|
while counter < vocab_size: |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
if num_parts == 0: |
|
part_names = ("pytorch_model.bin",) |
|
else: |
|
part_names = ( |
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) |
|
) |
|
|
|
for part_name in part_names: |
|
print(f"\n* Loading part: {part_name}") |
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |
|
|
|
for name in model_part.keys(): |
|
data = model_part[name].squeeze() |
|
n_dims = len(data.shape) |
|
|
|
|
|
|
|
ftype_cur = 0 |
|
if ftype == 1 and name[-7:] == ".weight" and n_dims > 1: |
|
ftype_cur = 1 |
|
data = data.to(dtype=torch.float16 if ftype_cur == 1 else torch.float32).numpy() |
|
|
|
print( |
|
"Processing variable: " + name + " with shape: ", |
|
data.shape, |
|
"->", |
|
data.dtype, |
|
) |
|
|
|
|
|
str = name.encode("utf-8") |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) |
|
fout.write(str) |
|
|
|
|
|
data.tofile(fout) |
|
|
|
|
|
del model_part |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |
|
|