File size: 4,948 Bytes
13d3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import struct
import sys

import torch
from transformers import AutoConfig, AutoTokenizer


# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1))
        + list(range(ord("¡"), ord("¬") + 1))
        + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1

    cs = [chr(n) for n in cs]

    return dict(zip(bs, cs))


def count_model_parts(dir_model: str) -> int:
    """Returns the number of model parts in the model directory."""
    num_parts = 0
    for filename in os.listdir(dir_model):
        if filename.startswith("pytorch_model-"):
            num_parts += 1

    if num_parts > 0:
        print(f"Found {num_parts} model parts in {dir_model}")
    return num_parts


if len(sys.argv) < 3:
    print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
    print("  ftype == 0 -> float32")
    print("  ftype == 1 -> float16")
    sys.exit(1)


# output in the same directory as the model
dir_model = sys.argv[1]
# get number of model parts
num_parts = count_model_parts(dir_model)

# possible data types
#   ftype == 0 -> float32
#   ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]

ftype = 1
if len(sys.argv) > 2:
    ftype = int(sys.argv[2])
    if ftype < 0 or ftype > 1:
        print("Invalid ftype: " + str(ftype))
        sys.exit(1)
    fname_out = dir_model + "/ggml-model-" + ftype_str[ftype] + ".bin"


tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True)
hparams = config.to_dict()

fout = open(fname_out, "wb")

fout.write(struct.pack("i", 0x67676D6C))  # magic: ggml in hex
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["max_seq_len"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"]))
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0))
fout.write(struct.pack("i", ftype))

vocab_size = hparams["vocab_size"]

encoder = tokenizer.vocab
# Add added_tokens (special tokens) to the encoder
encoder.update(tokenizer.get_added_vocab())

byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}

counter = 0
# sort by value
for key in sorted(encoder, key=encoder.get):
    # workaround for key error when c not found
    text = ""
    for c in key:
        if c not in byte_decoder:
            text += c
        else:
            text += chr(byte_decoder[c])
    text = bytearray(text, encoding="utf-8")
    fout.write(struct.pack("i", len(text)))
    fout.write(text)
    counter += 1

# Repeat last token until vocab_size
while counter < vocab_size:
    fout.write(struct.pack("i", len(text)))
    fout.write(text)
    counter += 1

if num_parts == 0:
    part_names = ("pytorch_model.bin",)
else:
    part_names = (
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
    )

for part_name in part_names:
    print(f"\n* Loading part: {part_name}")
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")

    for name in model_part.keys():
        data = model_part[name].squeeze()
        n_dims = len(data.shape)

        # ftype == 0 -> float32, ftype == 1 -> float16
        # default type is fp32
        ftype_cur = 0
        if ftype == 1 and name[-7:] == ".weight" and n_dims > 1:
            ftype_cur = 1
        data = data.to(dtype=torch.float16 if ftype_cur == 1 else torch.float32).numpy()

        print(
            "Processing variable: " + name + " with shape: ",
            data.shape,
            "->",
            data.dtype,
        )

        # header
        str = name.encode("utf-8")
        fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
        for i in range(n_dims):
            fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
        fout.write(str)

        # data
        data.tofile(fout)

    # release memory
    del model_part

fout.close()

print("Done. Output file: " + fname_out)
print("")