import os import struct import sys import torch from transformers import AutoConfig, AutoTokenizer # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def count_model_parts(dir_model: str) -> int: """Returns the number of model parts in the model directory.""" num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("pytorch_model-"): num_parts += 1 if num_parts > 0: print(f"Found {num_parts} model parts in {dir_model}") return num_parts if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] # get number of model parts num_parts = count_model_parts(dir_model) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = dir_model + "/ggml-model-" + ftype_str[ftype] + ".bin" tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True) hparams = config.to_dict() fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex fout.write(struct.pack("i", hparams["d_model"])) fout.write(struct.pack("i", hparams["max_seq_len"])) fout.write(struct.pack("i", hparams["n_heads"])) fout.write(struct.pack("i", hparams["n_layers"])) fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"])) fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0)) fout.write(struct.pack("i", ftype)) vocab_size = hparams["vocab_size"] encoder = tokenizer.vocab # Add added_tokens (special tokens) to the encoder encoder.update(tokenizer.get_added_vocab()) byte_encoder = bytes_to_unicode() byte_decoder = {v: k for k, v in byte_encoder.items()} counter = 0 # sort by value for key in sorted(encoder, key=encoder.get): # workaround for key error when c not found text = "" for c in key: if c not in byte_decoder: text += c else: text += chr(byte_decoder[c]) text = bytearray(text, encoding="utf-8") fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 # Repeat last token until vocab_size while counter < vocab_size: fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 if num_parts == 0: part_names = ("pytorch_model.bin",) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: print(f"\n* Loading part: {part_name}") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") for name in model_part.keys(): data = model_part[name].squeeze() n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 # default type is fp32 ftype_cur = 0 if ftype == 1 and name[-7:] == ".weight" and n_dims > 1: ftype_cur = 1 data = data.to(dtype=torch.float16 if ftype_cur == 1 else torch.float32).numpy() print( "Processing variable: " + name + " with shape: ", data.shape, "->", data.dtype, ) # header str = name.encode("utf-8") fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str) # data data.tofile(fout) # release memory del model_part fout.close() print("Done. Output file: " + fname_out) print("")