File size: 41,999 Bytes
13d3ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
#include "ggml/ggml.h"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include "common.h"
#include "common-ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <set>
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
typedef int32_t gpt2_pos;
typedef int32_t gpt2_seq_id;
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t ftype = 1;
float eps = 1e-5f;
};
struct gpt2_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// mlp
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gpt2_kv_cell {
gpt2_pos pos = -1;
gpt2_pos delta = 0;
std::set<gpt2_seq_id> seq_id;
bool has_seq_id(const gpt2_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
};
struct gpt2_kv_cache {
// key + value memory
struct ggml_tensor * k;
struct ggml_tensor * v;
//
uint32_t head = 0;
uint32_t size = 0;
// computed before each graph build
uint32_t n = 0;
std::vector<gpt2_kv_cell> cells;
ggml_backend_buffer_t buffer;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
gpt2_kv_cache kv_cache;
struct ggml_context * ctx;
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer_w;
std::map<std::string, struct ggml_tensor *> tensors;
};
// Input data for gpt2_decode
// A gpt2_batch object can contain input about one or many sequences
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
//
// - token : the token ids of the input (used when embd is NULL)
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output
//
struct gpt2_batch {
int32_t n_tokens = -1;
gpt_vocab::id * token = {};
float * embd = {};
gpt2_pos * pos = {};
gpt2_seq_id * seq_id = {};
int8_t * logits = {};
};
// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab, int n_ctx, int n_gpu_layers) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t buffer_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
buffer_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
buffer_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
buffer_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
buffer_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
buffer_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
buffer_size += (6 + 12*n_layer)*128; // alignment overhead
printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
printf("%s: backend buffer size = %6.2f MB\n", __func__, buffer_size/(1024.0*1024.0));
}
// create the ggml context
{
size_t n_tensors = 2 + 6 + 12*model.hparams.n_layer;
struct ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead() * n_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// initialize the backend
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: using CUDA backend\n", __func__);
model.backend = ggml_backend_cuda_init();
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
}
#endif
#ifdef GGML_USE_METAL
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: using Metal backend\n", __func__);
ggml_metal_log_set_callback(ggml_log_callback_default, nullptr);
model.backend = ggml_backend_metal_init();
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
}
}
#endif
if (!model.backend) {
// fallback to CPU backend
fprintf(stderr, "%s: using CPU backend\n", __func__);
model.backend = ggml_backend_cpu_init();
}
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__);
return false;
}
// allocate weights buffer
model.buffer_w = ggml_backend_alloc_buffer(model.backend, buffer_size);
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/lm_head"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
// override the default training context with the user-provided
model.hparams.n_ctx = n_ctx;
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model.kv_cache.k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.kv_cache.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.kv_cache.head = 0;
model.kv_cache.size = n_ctx;
model.kv_cache.cells.resize(n_ctx);
const size_t memory_size = ggml_nbytes(model.kv_cache.k) + ggml_nbytes(model.kv_cache.v);
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
// create a backend buffer (can be in host or device memory)
model.kv_cache.buffer = ggml_backend_alloc_buffer(model.backend, memory_size + 256);
// allocate the tensors into the backend buffer
{
ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.kv_cache.buffer);
// this updates the pointers in the tensors to point to the correct location in the buffer
// this is necessary since the ggml_context is .no_alloc == true
// note that the buffer can actually be a device buffer, depending on the backend
ggml_allocr_alloc(alloc, model.kv_cache.k);
ggml_allocr_alloc(alloc, model.kv_cache.v);
ggml_allocr_free(alloc);
}
}
// load weights
{
ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_w);
size_t total_size = 0;
bool has_lm_head = false;
std::vector<char> read_buf;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
return false;
}
auto tensor = model.tensors[name];
ggml_set_name(tensor, name.c_str());
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
ggml_allocr_alloc(alloc, tensor);
if (ggml_backend_is_cpu (model.backend)
#ifdef GGML_USE_METAL
|| ggml_backend_is_metal(model.backend)
#endif
) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(ggml_nbytes(tensor));
fin.read(read_buf.data(), ggml_nbytes(tensor));
ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
}
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
//ggml_allocr_alloc(alloc, model.lm_head);
//ggml_backend_tensor_copy(tensor, model.lm_head);
model.lm_head = tensor;
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
ggml_allocr_free(alloc);
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
}
fin.close();
return true;
}
// build the computation graph
struct ggml_cgraph * gpt2_graph(
const gpt2_model & model,
struct ggml_allocr * allocr,
const gpt2_batch & batch) {
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const auto & kv_cache = model.kv_cache;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(allocr) ? n_ctx : kv_cache.n;
const int32_t kv_head = ggml_allocr_is_measure(allocr) ? n_ctx - n_tokens : kv_cache.head;
// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(allocr, inp_tokens);
if (!ggml_allocr_is_measure(allocr)) {
ggml_backend_tensor_set(inp_tokens, batch.token, 0, n_tokens*ggml_element_size(inp_tokens));
}
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(allocr, position);
if (!ggml_allocr_is_measure(allocr)) {
for (int i = 0; i < n_tokens; ++i) {
int32_t v = batch.pos[i];
ggml_backend_tensor_set(position, &v, i*sizeof(int32_t), sizeof(v));
}
}
// wte + wpe
inpL =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.wte, inp_tokens),
ggml_get_rows(ctx0, model.wpe, position));
} else {
GGML_ASSERT(batch.embd);
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(allocr, inpL);
if (!ggml_allocr_is_measure(allocr)) {
ggml_backend_tensor_set(inpL, batch.embd, 0, n_tokens * n_embd * ggml_element_size(inpL));
}
}
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(allocr, KQ_scale);
if (!ggml_allocr_is_measure(allocr)) {
float s = 1.0f/sqrtf(float(n_embd)/n_head);
ggml_backend_tensor_set(KQ_scale, &s, 0, sizeof(s));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(allocr, KQ_mask);
if (!ggml_allocr_is_measure(allocr)) {
std::vector<float> data_buf(n_kv*n_tokens);
const float neg_inf_v = -INFINITY;
for (int h = 0; h < 1; ++h) {
int h_offset = h*(n_kv*n_tokens);
for (int j = 0; j < n_tokens; ++j) {
const gpt2_pos pos = batch.pos[j];
const gpt2_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_cache.cells[i].has_seq_id(seq_id) || kv_cache.cells[i].pos > pos) {
data_buf[h_offset + j*n_kv + i] = neg_inf_v;
}
}
}
}
ggml_backend_tensor_set(KQ_mask, data_buf.data(), 0, data_buf.size() * sizeof(float));
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
// norm
{
// [ 768, N]
cur = ggml_norm(ctx0, inpL, hparams.eps);
// cur = ln_1_g*cur + ln_1_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
cur,
model.layers[il].ln_1_g),
model.layers[il].ln_1_b);
}
// attn
// [2304, 768] - model.layers[il].c_attn_attn_w
// [2304, 1] - model.layers[il].c_attn_attn_b
// [ 768, n_tokens] - cur (in)
// [2304, n_tokens] - cur (out)
//
// cur = attn_w*cur + attn_b
// [2304, n_tokens]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_attn_attn_b);
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*n_embd);
// store key and value to memory
if (n_tokens >= 1) {
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_cache.k, n_tokens*n_embd, (ggml_element_size(model.kv_cache.k)*n_embd)*(il*n_ctx + kv_head));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_cache.v, n_tokens*n_embd, (ggml_element_size(model.kv_cache.v)*n_embd)*(il*n_ctx + kv_head));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
// [64, N, 12]
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, n_tokens)),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_kv).permute(0, 2, 1, 3)
// [64, n_kv, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_cache.k, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.k)*n_embd),
n_embd/n_head, n_head, n_kv),
0, 2, 1, 3);
// GG: flash attention
//struct ggml_tensor * V =
// ggml_cpy(ctx0,
// ggml_permute(ctx0,
// ggml_reshape_3d(ctx0,
// ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
// n_embd/n_head, n_head, n_kv),
// 1, 2, 0, 3),
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_embd/n_head, n_head));
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
// K * Q
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
KQ_scale);
// KQ_masked = mask_past(KQ_scaled)
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
// KQ = soft_max(KQ_masked)
// [n_kv, N, 12]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_kv).permute(1, 2, 0, 3).contiguous()
// [n_kv, 64, 12]
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
n_embd/n_head, n_head, n_kv),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.kv_cache.v->type, n_kv, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, n_tokens, 12]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// [64, 12, n_tokens]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
// [768, n_tokens]
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
}
// projection
// [ 768, 768] - model.layers[il].c_attn_proj_w
// [ 768, 1] - model.layers[il].c_attn_proj_b
// [ 768, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_attn_proj_b);
}
// add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
// feed-forward network
{
// norm
{
cur = ggml_norm(ctx0, inpFF, hparams.eps);
// cur = ln_2_g*cur + ln_2_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
cur,
model.layers[il].ln_2_g),
model.layers[il].ln_2_b);
}
// fully connected
// [3072, 768] - model.layers[il].c_mlp_fc_w
// [3072, 1] - model.layers[il].c_mlp_fc_b
// [ 768, N] - cur (in)
// [3072, N] - cur (out)
//
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_mlp_fc_b);
// GELU activation
// [3072, N]
cur = ggml_gelu(ctx0, cur);
// projection
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
// [ 768, 1] - model.layers[il].c_mlp_proj_b
// [3072, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_mlp_proj_b);
}
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
}
// norm
{
// [ 768, N]
inpL = ggml_norm(ctx0, inpL, hparams.eps);
// inpL = ln_f_g*inpL + ln_f_b
// [ 768, N]
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
inpL,
model.ln_f_g),
model.ln_f_b);
}
// inpL = WTE * inpL
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
ggml_build_forward_expand(gf, inpL);
ggml_free(ctx0);
return gf;
}
static void gpt2_kv_cache_seq_cp(
struct gpt2_kv_cache & cache,
gpt2_seq_id seq_id_src,
gpt2_seq_id seq_id_dst,
gpt2_pos p0,
gpt2_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<gpt2_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
struct gpt2_batch gpt2_batch_init(int32_t n_tokens, int32_t embd) {
gpt2_batch batch;
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
} else {
batch.token = (gpt_vocab::id *) malloc(sizeof(gpt_vocab::id) * n_tokens);
}
batch.pos = (gpt2_pos *) malloc(sizeof(gpt2_pos) * n_tokens);
batch.seq_id = (gpt2_seq_id *) malloc(sizeof(gpt2_seq_id) * n_tokens);
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
return batch;
}
void gpt2_batch_free(struct gpt2_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.seq_id) free(batch.seq_id);
if (batch.logits) free(batch.logits);
}
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// < 0 - error
int gpt2_decode(
struct gpt2_model & model,
struct ggml_allocr * allocr,
struct gpt2_batch batch,
int n_threads,
std::vector<float> & logits) {
const int32_t n_tokens = batch.n_tokens;
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
if (n_tokens == 0) {
printf("%s: n_tokens == 0", __func__);
return -1;
}
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd));
auto & cache = model.kv_cache;
for (int i = 0; i < n_tokens; i++) {
cache.cells[cache.head + i].pos = batch.pos[i];
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
}
cache.n = cache.head + n_tokens;
// reset the allocator to free all the memory allocated during the previous inference
ggml_allocr_reset(allocr);
struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch);
// allocate tensors
ggml_allocr_alloc_graph(allocr, gf);
// run the computation
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(model.backend)) {
ggml_backend_metal_set_n_cb(model.backend, n_threads);
}
#endif
ggml_backend_graph_compute(model.backend, gf);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
// in this case, the output tensor is the last one in the graph
struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
if (batch.logits) {
// return logits for all tokens
logits.resize(n_vocab*n_tokens);
for (int32_t i = 0; i < n_tokens; i++) {
if (batch.logits[i] == 0) {
continue;
}
ggml_backend_tensor_get(inpL, logits.data() + n_vocab*i, n_vocab*i*sizeof(float), sizeof(float)*n_vocab);
}
} else {
// return result just for the last token
logits.resize(n_vocab);
ggml_backend_tensor_get(inpL, logits.data(), (n_vocab*(n_tokens-1))*sizeof(float), sizeof(float)*n_vocab);
}
// update the kv ring buffer
cache.head += n_tokens;
// ensure kv cache head points to a valid index.
if (cache.head >= cache.size) {
printf("%s: cache.head >= cache.size\n", __func__);
return -2;
}
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.seed < 0) {
params.seed = time(NULL);
}
printf("%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.prompt.empty()) {
params.prompt = gpt_random_prompt(rng);
}
int64_t t_load_us = 0;
gpt_vocab vocab;
gpt2_model model;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
t_load_us = ggml_time_us() - t_start_us;
test_gpt_tokenizer(vocab, params.token_test);
}
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
// keep this buffer alive while evaluating the model
ggml_backend_buffer_t buf_compute;
const int n_parallel = params.n_parallel;
const int n_batch_max = std::max(embd_inp.size(), (size_t)n_parallel);
// create a gpt2_batch
// we use this object to submit token data for decoding
gpt2_batch batch = gpt2_batch_init(n_batch_max, 0);
// prepare required memory and allocate the compute buffer
struct ggml_allocr * allocr = NULL;
{
// alignment required by the backend
size_t align = ggml_backend_get_alignment(model.backend);
allocr = ggml_allocr_new_measure(align);
batch.n_tokens = n_batch_max;
// create the worst case graph for memory usage estimation
struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch);
// compute the required memory
size_t mem_size = ggml_allocr_alloc_graph(allocr, gf);
// recreate the allocator with the required memory
ggml_allocr_free(allocr);
buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size);
allocr = ggml_allocr_new_from_buffer(buf_compute);
fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
}
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
std::vector<float> logits;
// evaluate the initial prompt
batch.n_tokens = embd_inp.size();
for (int32_t i = 0; i < batch.n_tokens; i++) {
batch.token[i] = embd_inp[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
}
// gpt2_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (gpt2_decode(model, allocr, batch, params.n_threads, logits) != 0) {
printf("%s: gpt2_decode() failed\n", __func__);
return 1;
}
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
gpt2_kv_cache_seq_cp(model.kv_cache, 0, i, 0, batch.n_tokens);
}
if (n_parallel > 1) {
printf("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
}
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size());
for (int i = 0; i < std::min(8, (int) embd_inp.size()); i++) {
printf("%d ", embd_inp[i]);
}
printf("\n\n");
std::vector<gpt_vocab::token> streams(n_parallel);
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
int n_cur = batch.n_tokens;
int n_len = batch.n_tokens + params.n_predict;
int n_decoded = 0;
const int n_vocab = model.hparams.n_vocab;
const int top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
while (n_cur < n_len) {
batch.n_tokens = 0;
for (int32_t i = 0; i < n_parallel; ++i) {
if (i_batch[i] < 0) {
// the stream has already finished
continue;
}
auto * logits_i = logits.data() + i_batch[i]*n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p(vocab, logits_i, top_k, top_p, temp, rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
// is it an end of stream? -> mark the stream as finished
if ((!params.ignore_eos && id == 50256) || n_cur == n_len - 1) {
i_batch[i] = -1;
printf("\n");
if (n_parallel > 1) {
printf("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
}
continue;
}
auto& token = vocab.id_to_token[id];
if (n_parallel == 1) {
printf("%s", token.c_str());
fflush(stdout);
}
streams[i] += token;
// push this new token for next evaluation
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = n_cur;
batch.seq_id[batch.n_tokens] = i;
batch.logits[batch.n_tokens] = true;
i_batch[i] = batch.n_tokens;
batch.n_tokens += 1;
n_decoded += 1;
}
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
n_cur += 1;
{
const int64_t t_start_us = ggml_time_us();
// evaluate the current batch with the transformer model
int ret_code = gpt2_decode(model, allocr, batch, params.n_threads, logits);
if (ret_code != 0) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, ret_code);
return 1;
}
t_predict_us += ggml_time_us() - t_start_us;
}
}
if (n_parallel > 1) {
printf("\n");
for (int32_t i = 0; i < n_parallel; ++i) {
printf("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
}
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n\n");
printf("%s: n_decoded = %8d\n", __func__, n_decoded);
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
printf("%s: predict time = %8.2f ms\n", __func__, t_predict_us/1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
gpt2_batch_free(batch);
ggml_free(model.ctx);
ggml_backend_buffer_free(model.buffer_w);
ggml_backend_buffer_free(model.kv_cache.buffer);
ggml_backend_buffer_free(buf_compute);
ggml_backend_free(model.backend);
return 0;
}
|