File size: 18,585 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# DeepFloyd IF

## Overview

DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.
The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
- Stage 1: a base model that generates 64x64 px image based on text prompt,
- Stage 2: a 64x64 px => 256x256 px super-resolution model, and
- Stage 3: a 256x256 px => 1024x1024 px super-resolution model
Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling.
Stage 3 is [Stability AI's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler).
The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset.
Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.

## Usage

Before you can use IF, you need to accept its usage conditions. To do so:
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in.
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
3. Make sure to login locally. Install `huggingface_hub`:
```sh
pip install huggingface_hub --upgrade
```

run the login function in a Python shell:

```py
from huggingface_hub import login

login()
```

and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens).

Next we install `diffusers` and dependencies:

```sh
pip install -q diffusers accelerate transformers
```

The following sections give more in-detail examples of how to use IF. Specifically:

- [Text-to-Image Generation](#text-to-image-generation)
- [Image-to-Image Generation](#text-guided-image-to-image-generation)
- [Inpainting](#text-guided-inpainting-generation)
- [Reusing model weights](#converting-between-different-pipelines)
- [Speed optimization](#optimizing-for-speed)
- [Memory optimization](#optimizing-for-memory)

**Available checkpoints**
- *Stage-1*
  - [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
  - [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0)
  - [DeepFloyd/IF-I-M-v1.0](https://huggingface.co/DeepFloyd/IF-I-M-v1.0)

- *Stage-2*
  - [DeepFloyd/IF-II-L-v1.0](https://huggingface.co/DeepFloyd/IF-II-L-v1.0)
  - [DeepFloyd/IF-II-M-v1.0](https://huggingface.co/DeepFloyd/IF-II-M-v1.0)

- *Stage-3*
  - [stabilityai/stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)


**Google Colab**
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)

### Text-to-Image Generation

By default diffusers makes use of [model cpu offloading](../../optimization/memory#model-offloading) to run the whole IF pipeline with as little as 14 GB of VRAM.

```python
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil, make_image_grid
import torch

# stage 1
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, noise_level=100, generator=generator).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=3)
```

### Text Guided Image-to-Image Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFImg2ImgPipeline`] and [`IFImg2ImgSuperResolutionPipeline`] pipelines.

**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components`] argument as explained [here](#converting-between-different-pipelines).

```python
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
original_image = load_image(url)
original_image = original_image.resize((768, 512))

# stage 1
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "A fantasy landscape in style minecraft"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    original_image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=4)
```

### Text Guided Inpainting Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines.

**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines).

```python
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch

# download image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
original_image = load_image(url)

# download mask
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
mask_image = load_image(url)

# stage 1
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "blue sunglasses"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
stage_1_output = stage_1(
    image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# stage 2
stage_2_output = stage_2(
    image=stage_1_output,
    original_image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
#pt_to_pil(stage_1_output)[0].save("./if_stage_II.png")

# stage 3
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, mask_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=5)
```

### Converting between different pipelines

In addition to being loaded with `from_pretrained`, Pipelines can also be loaded directly from each other.

```python
from diffusers import IFPipeline, IFSuperResolutionPipeline

pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")


from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline

pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)


from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline

pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
```

### Optimizing for speed

The simplest optimization to run IF faster is to move all model components to the GPU.

```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
```

You can also run the diffusion process for a shorter number of timesteps.

This can either be done with the `num_inference_steps` argument:

```py
pipe("<prompt>", num_inference_steps=30)
```

Or with the `timesteps` argument:

```py
from diffusers.pipelines.deepfloyd_if import fast27_timesteps

pipe("<prompt>", timesteps=fast27_timesteps)
```

When doing image variation or inpainting, you can also decrease the number of timesteps
with the strength argument. The strength argument is the amount of noise to add to the input image which also determines how many steps to run in the denoising process.
A smaller number will vary the image less but run faster.

```py
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")

image = pipe(image=image, prompt="<prompt>", strength=0.3).images
```

You can also use [`torch.compile`](../../optimization/torch2.0). Note that we have not exhaustively tested `torch.compile`
with IF and it might not give expected results.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")

pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```

### Optimizing for memory

When optimizing for GPU memory, we can use the standard diffusers CPU offloading APIs.

Either the model based CPU offloading,

```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
```

or the more aggressive layer based CPU offloading.

```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_sequential_cpu_offload()
```

Additionally, T5 can be loaded in 8bit precision

```py
from transformers import T5EncoderModel

text_encoder = T5EncoderModel.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0",
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")
```

For CPU RAM constrained machines like Google Colab free tier where we can't load all model components to the CPU at once, we can manually only load the pipeline with
the text encoder or UNet when the respective model components are needed.

```py
from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
from diffusers.utils import pt_to_pil, make_image_grid

text_encoder = T5EncoderModel.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)

# text to image
pipe = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0",
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)

# Remove the pipeline so we can re-load the pipeline with the unet
del text_encoder
del pipe
gc.collect()
torch.cuda.empty_cache()

pipe = IFPipeline.from_pretrained(
    "DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)

generator = torch.Generator().manual_seed(0)
stage_1_output = pipe(
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")

# Remove the pipeline so we can load the super-resolution pipeline
del pipe
gc.collect()
torch.cuda.empty_cache()

# First super resolution

pipe = IFSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)

generator = torch.Generator().manual_seed(0)
stage_2_output = pipe(
    image=stage_1_output,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0]], rows=1, rows=2)
```

## Available Pipelines:

| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py) | *Text-to-Image Generation* | - |
| [pipeline_if_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py) | *Image-to-Image Generation* | - |
| [pipeline_if_img2img_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py) | *Image-to-Image Generation* | - |

## IFPipeline
[[autodoc]] IFPipeline
	- all
	- __call__

## IFSuperResolutionPipeline
[[autodoc]] IFSuperResolutionPipeline
	- all
	- __call__

## IFImg2ImgPipeline
[[autodoc]] IFImg2ImgPipeline
	- all
	- __call__

## IFImg2ImgSuperResolutionPipeline
[[autodoc]] IFImg2ImgSuperResolutionPipeline
	- all
	- __call__

## IFInpaintingPipeline
[[autodoc]] IFInpaintingPipeline
	- all
	- __call__

## IFInpaintingSuperResolutionPipeline
[[autodoc]] IFInpaintingSuperResolutionPipeline
	- all
	- __call__