File size: 11,470 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast

from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
    require_torch_gpu,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


class Dummies:
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 32

    @property
    def dummy_tokenizer(self):
        tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = MCLIPConfig(
            numDims=self.cross_attention_dim,
            transformerDimensions=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=1005,
        )

        text_encoder = MultilingualCLIP(config)
        text_encoder = text_encoder.eval()

        return text_encoder

    @property
    def dummy_unet(self):
        torch.manual_seed(0)

        model_kwargs = {
            "in_channels": 9,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 8,
            "addition_embed_type": "text_image",
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "encoder_hid_dim": self.text_embedder_hidden_size,
            "encoder_hid_dim_type": "text_image_proj",
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": None,
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_movq_kwargs(self):
        return {
            "block_out_channels": [32, 64],
            "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
            "in_channels": 3,
            "latent_channels": 4,
            "layers_per_block": 1,
            "norm_num_groups": 8,
            "norm_type": "spatial",
            "num_vq_embeddings": 12,
            "out_channels": 3,
            "up_block_types": [
                "AttnUpDecoderBlock2D",
                "UpDecoderBlock2D",
            ],
            "vq_embed_dim": 4,
        }

    @property
    def dummy_movq(self):
        torch.manual_seed(0)
        model = VQModel(**self.dummy_movq_kwargs)
        return model

    def get_dummy_components(self):
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        unet = self.dummy_unet
        movq = self.dummy_movq

        scheduler = DDIMScheduler(
            num_train_timesteps=1000,
            beta_schedule="linear",
            beta_start=0.00085,
            beta_end=0.012,
            clip_sample=False,
            set_alpha_to_one=False,
            steps_offset=1,
            prediction_type="epsilon",
            thresholding=False,
        )

        components = {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "movq": movq,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
        negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
        # create init_image
        image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
        # create mask
        mask = np.zeros((64, 64), dtype=np.float32)
        mask[:32, :32] = 1

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "image": init_image,
            "mask_image": mask,
            "image_embeds": image_embeds,
            "negative_image_embeds": negative_image_embeds,
            "generator": generator,
            "height": 64,
            "width": 64,
            "num_inference_steps": 2,
            "guidance_scale": 4.0,
            "output_type": "np",
        }
        return inputs


class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyInpaintPipeline
    params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"]
    batch_params = [
        "prompt",
        "negative_prompt",
        "image_embeds",
        "negative_image_embeds",
        "image",
        "mask_image",
    ]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    def get_dummy_components(self):
        dummies = Dummies()
        return dummies.get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        dummies = Dummies()
        return dummies.get_dummy_inputs(device=device, seed=seed)

    def test_kandinsky_inpaint(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=5e-1)


@nightly
@require_torch_gpu
class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_kandinsky_inpaint(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy"
        )

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
        )
        mask = np.zeros((768, 768), dtype=np.float32)
        mask[:250, 250:-250] = 1

        prompt = "a hat"

        pipe_prior = KandinskyPriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        pipeline = KandinskyInpaintPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_emb, zero_image_emb = pipe_prior(
            prompt,
            generator=generator,
            num_inference_steps=5,
            negative_prompt="",
        ).to_tuple()

        output = pipeline(
            prompt,
            image=init_image,
            mask_image=mask,
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            height=768,
            width=768,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)