File size: 11,675 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDPMScheduler,
HunyuanDiT2DModel,
HunyuanDiTPipeline,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = HunyuanDiTPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params
def get_dummy_components(self):
torch.manual_seed(0)
transformer = HunyuanDiT2DModel(
sample_size=16,
num_layers=2,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
in_channels=4,
cross_attention_dim=32,
cross_attention_dim_t5=32,
pooled_projection_dim=16,
hidden_size=24,
activation_fn="gelu-approximate",
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"use_resolution_binning": False,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 16, 16, 3))
expected_slice = np.array(
[0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_sequential_cpu_offload_forward_pass(self):
# TODO(YiYi) need to fix later
pass
def test_sequential_offload_forward_pass_twice(self):
# TODO(YiYi) need to fix later
pass
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-3,
)
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = pipe.encode_prompt(
prompt,
device=torch_device,
dtype=torch.float32,
text_encoder_index=1,
)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_feed_forward_chunking(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_no_chunking = image[0, -3:, -3:, -1]
pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_chunking = image[0, -3:, -3:, -1]
max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max()
self.assertLess(max_diff, 1e-4)
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image = pipe(**inputs)[0]
original_image_slice = image[0, -3:, -3:, -1]
pipe.transformer.fuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_fused = pipe(**inputs)[0]
image_slice_fused = image_fused[0, -3:, -3:, -1]
pipe.transformer.unfuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_disabled = pipe(**inputs)[0]
image_slice_disabled = image_disabled[0, -3:, -3:, -1]
assert np.allclose(
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
), "Fusion of QKV projections shouldn't affect the outputs."
assert np.allclose(
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
assert np.allclose(
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Original outputs should match when fused QKV projections are disabled."
@slow
@require_torch_gpu
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase):
prompt = "一个宇航员在骑马"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_hunyuan_dit_1024(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = HunyuanDiTPipeline.from_pretrained(
"XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(
prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np"
).images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array(
[0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125]
)
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}"
|