File size: 8,800 Bytes
4de18d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
'''
!huggingface-cli download \
--repo-type dataset svjack/video-dataset-Lily-Bikini-rm-background-organized \
--local-dir video-dataset-Lily-Bikini-rm-background-organized
import re
def insert_content_in_string(insert_content, character_name, gender=None):
"""
在原始字符串中特定位置插入内容。
:param insert_content: 要插入的内容
:param character_name: 角色名称
:param gender: 性别(可选,可以是 "1boy" 或 "1girl")
:return: 修改后的字符串
"""
# 根据 character_name 和 gender 生成 original_string
original_string = f"solo,{character_name}\(genshin impact\),{gender if gender else '1boy'},highres,"
# 根据 character_name 生成 target_pattern
target_pattern = re.escape(character_name)
# 插入内容
modified_string = re.sub(target_pattern, r'\g<0>' + insert_content, original_string)
return original_string ,modified_string
from datasets import load_dataset
character_name = "Xiangling"
gender = "1girl" # 可选参数
prompt_list = load_dataset("svjack/daily-actions-en-zh")["train"].to_pandas()["en"].map(
lambda x: ", {}".format(x)
).map(
lambda insert_content: insert_content_in_string(insert_content, character_name, gender)[-1]
).dropna().drop_duplicates().values.tolist()
print(len(prompt_list))
import pandas as pd
import pathlib
reference_video_list = pd.Series(
list(pathlib.Path("video-dataset-Lily-Bikini-rm-background-organized").rglob("*.mp4"))
).map(str).values.tolist()
print(len(reference_video_list))
from itertools import product
pd.DataFrame(list(product(*[reference_video_list, prompt_list])))[[1, 0]].rename(
columns = {
1: "prompt",
0: "input_video"
}
).to_csv("xiangling_video_seed.csv", index = False)
!python produce_gif_script.py xiangling_video_seed.csv "svjack/GenshinImpact_XL_Base" xiangling_gif_dir \
--num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
'''
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
import argparse
from moviepy.editor import VideoFileClip, ImageSequenceClip
import os
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import export_to_gif
from PIL import Image
from controlnet_aux.processor import Processor
import pandas as pd
import random
from tqdm import tqdm
# 初始化 MotionAdapter 和 ControlNetModel
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
def initialize_pipeline(model_id):
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")
# 初始化 AnimateDiffSDXLControlnetPipeline
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
return pipe
# 全局初始化管道
pipe = None
def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
"""
将视频处理成指定帧数的视频,并保持原始的帧率。
:param input_video_path: 输入视频文件路径
:param num_frames: 目标帧数
:param temp_folder: 临时文件夹路径
"""
clip = VideoFileClip(input_video_path)
original_duration = clip.duration
segment_duration = original_duration / num_frames
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
for i in range(num_frames):
frame_time = i * segment_duration
frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
clip.save_frame(frame_path, t=frame_time)
frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
final_clip.write_videofile("resampled_video.mp4", codec='libx264')
print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")
def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames', num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=0.5, width=512, height=768):
"""
生成带有文本提示的视频。
:param input_video_path: 输入视频文件路径
:param prompt: 文本提示
:param model_id: 模型ID
:param gif_output_path: GIF 输出文件路径
:param seed: 随机种子
:param num_frames: 目标帧数
:param keep_imgs: 是否保留临时图片
:param temp_folder: 临时文件夹路径
:param num_inference_steps: 推理步数
:param guidance_scale: 引导比例
:param controlnet_conditioning_scale: ControlNet 条件比例
:param width: 输出宽度
:param height: 输出高度
"""
split_video_into_frames(input_video_path, num_frames, temp_folder)
folder_path = temp_folder
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cuda").manual_seed(seed)
global pipe
if pipe is None:
pipe = initialize_pipeline(model_id)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=width,
height=height,
num_frames=num_frames,
conditioning_frames=cn2,
generator=generator
)
frames = output.frames[0]
export_to_gif(frames, gif_output_path)
print(f"生成的 GIF 已保存到 {gif_output_path}")
if not keep_imgs:
# 删除临时文件夹
import shutil
shutil.rmtree(temp_folder)
def sanitize_prompt(prompt):
"""
将提示词中的空格和非英文字符替换为下划线。
"""
return "".join([c if c.isalnum() or c in [",", ","] else '_' for c in prompt])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
parser.add_argument("csv_file", help="CSV 文件路径")
parser.add_argument("model_id", help="模型ID")
parser.add_argument("output_dir", help="GIF 输出目录")
parser.add_argument("--seed", type=int, default=0, help="随机种子")
parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
parser.add_argument("--num_inference_steps", type=int, default=50, help="推理步数")
parser.add_argument("--guidance_scale", type=float, default=20.0, help="引导比例")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.5, help="ControlNet 条件比例")
parser.add_argument("--width", type=int, default=512, help="输出宽度")
parser.add_argument("--height", type=int, default=768, help="输出高度")
args = parser.parse_args()
# 读取CSV文件
df = pd.read_csv(args.csv_file)
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
input_video = row['input_video']
prompt = row['prompt']
# 随机设定seed
seed = random.randint(0, 2**32 - 1)
# 处理提示词
sanitized_prompt = sanitize_prompt(prompt)
# 生成GIF输出路径,包含seed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
gif_output_path = os.path.join(args.output_dir, f"{sanitized_prompt}_seed_{seed}.gif")
generate_video_with_prompt(input_video, prompt, args.model_id, gif_output_path, seed, args.num_frames,
args.keep_imgs, args.temp_folder, args.num_inference_steps, args.guidance_scale,
args.controlnet_conditioning_scale, args.width, args.height) |