File size: 15,444 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2024 Microsoft and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, List, Optional, Tuple, Union

import torch
from transformers import CLIPTextModel, CLIPTokenizer

from ....configuration_utils import ConfigMixin, register_to_config
from ....models import ModelMixin, Transformer2DModel, VQModel
from ....schedulers import VQDiffusionScheduler
from ....utils import logging
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin):
    """
    Utility class for storing learned text embeddings for classifier free sampling
    """

    @register_to_config
    def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None):
        super().__init__()

        self.learnable = learnable

        if self.learnable:
            assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
            assert length is not None, "learnable=True requires `length` to be set"

            embeddings = torch.zeros(length, hidden_size)
        else:
            embeddings = None

        self.embeddings = torch.nn.Parameter(embeddings)


class VQDiffusionPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using VQ Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vqvae ([`VQModel`]):
            Vector Quantized Variational Auto-Encoder (VAE) model to encode and decode images to and from latent
            representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        transformer ([`Transformer2DModel`]):
            A conditional `Transformer2DModel` to denoise the encoded image latents.
        scheduler ([`VQDiffusionScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    vqvae: VQModel
    text_encoder: CLIPTextModel
    tokenizer: CLIPTokenizer
    transformer: Transformer2DModel
    learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings
    scheduler: VQDiffusionScheduler

    def __init__(
        self,
        vqvae: VQModel,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        transformer: Transformer2DModel,
        scheduler: VQDiffusionScheduler,
        learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings,
    ):
        super().__init__()

        self.register_modules(
            vqvae=vqvae,
            transformer=transformer,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
        )

    def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        prompt_embeds = self.text_encoder(text_input_ids.to(self.device))[0]

        # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
        # While CLIP does normalize the pooled output of the text transformer when combining
        # the image and text embeddings, CLIP does not directly normalize the last hidden state.
        #
        # CLIP normalizing the pooled output.
        # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
        prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)

        # duplicate text embeddings for each generation per prompt
        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            if self.learned_classifier_free_sampling_embeddings.learnable:
                negative_prompt_embeds = self.learned_classifier_free_sampling_embeddings.embeddings
                negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
            else:
                uncond_tokens = [""] * batch_size

                max_length = text_input_ids.shape[-1]
                uncond_input = self.tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
                # See comment for normalizing text embeddings
                negative_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True)

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        num_inference_steps: int = 100,
        guidance_scale: float = 5.0,
        truncation_rate: float = 1.0,
        num_images_per_prompt: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
    ) -> Union[ImagePipelineOutput, Tuple]:
        """
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide image generation.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
                Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
                most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
                `truncation_rate` are set to zero.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor` of shape (batch), *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Must be valid embedding indices.If not provided, a latents tensor will be generated of
                completely masked latent pixels.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
        """
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = guidance_scale > 1.0

        prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        # get the initial completely masked latents unless the user supplied it

        latents_shape = (batch_size, self.transformer.num_latent_pixels)
        if latents is None:
            mask_class = self.transformer.num_vector_embeds - 1
            latents = torch.full(latents_shape, mask_class).to(self.device)
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
            if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
                raise ValueError(
                    "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
                    f" {self.transformer.num_vector_embeds - 1} (inclusive)."
                )
            latents = latents.to(self.device)

        # set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=self.device)

        timesteps_tensor = self.scheduler.timesteps.to(self.device)

        sample = latents

        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
            # expand the sample if we are doing classifier free guidance
            latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample

            # predict the un-noised image
            # model_output == `log_p_x_0`
            model_output = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=t).sample

            if do_classifier_free_guidance:
                model_output_uncond, model_output_text = model_output.chunk(2)
                model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
                model_output -= torch.logsumexp(model_output, dim=1, keepdim=True)

            model_output = self.truncate(model_output, truncation_rate)

            # remove `log(0)`'s (`-inf`s)
            model_output = model_output.clamp(-70)

            # compute the previous noisy sample x_t -> x_t-1
            sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, sample)

        embedding_channels = self.vqvae.config.vq_embed_dim
        embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
        embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape)
        image = self.vqvae.decode(embeddings, force_not_quantize=True).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

    def truncate(self, log_p_x_0: torch.Tensor, truncation_rate: float) -> torch.Tensor:
        """
        Truncates `log_p_x_0` such that for each column vector, the total cumulative probability is `truncation_rate`
        The lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to
        zero.
        """
        sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True)
        sorted_p_x_0 = torch.exp(sorted_log_p_x_0)
        keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate

        # Ensure that at least the largest probability is not zeroed out
        all_true = torch.full_like(keep_mask[:, 0:1, :], True)
        keep_mask = torch.cat((all_true, keep_mask), dim=1)
        keep_mask = keep_mask[:, :-1, :]

        keep_mask = keep_mask.gather(1, indices.argsort(1))

        rv = log_p_x_0.clone()

        rv[~keep_mask] = -torch.inf  # -inf = log(0)

        return rv