|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
model-index: |
|
- name: cheater-7b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: ./julia/data.jsonl |
|
type: sharegpt |
|
conversation: chatml |
|
dataset_prepared_path: ./julia/prepared_data |
|
chat_template: chatml |
|
val_set_size: 0.05 |
|
output_dir: ./julia/lora-out |
|
hub_model_id: animmina/cheater-7b |
|
hub_strategy: every_save |
|
hf_use_auth_token: true |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: cheater-7b |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: v02 |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 4 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00003 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "<|im_end|>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# cheater-7b |
|
|
|
This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on 11 test cases from the [Julia LLM Leaderboard](https://github.com/svilupp/Julia-LLM-Leaderboard). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5741 |
|
|
|
## Model description |
|
|
|
Simple LORA adapter (rank: 8). |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.554 | 0.04 | 1 | 0.6521 | |
|
| 0.4152 | 0.26 | 7 | 0.6499 | |
|
| 0.3984 | 0.52 | 14 | 0.6283 | |
|
| 0.4133 | 0.78 | 21 | 0.6140 | |
|
| 0.3772 | 1.04 | 28 | 0.5951 | |
|
| 0.3855 | 1.22 | 35 | 0.5869 | |
|
| 0.4077 | 1.48 | 42 | 0.5840 | |
|
| 0.3104 | 1.74 | 49 | 0.5793 | |
|
| 0.3345 | 2.0 | 56 | 0.5776 | |
|
| 0.3207 | 2.19 | 63 | 0.5761 | |
|
| 0.3679 | 2.44 | 70 | 0.5784 | |
|
| 0.3593 | 2.7 | 77 | 0.5781 | |
|
| 0.2391 | 2.96 | 84 | 0.5761 | |
|
| 0.3329 | 3.15 | 91 | 0.5743 | |
|
| 0.2636 | 3.41 | 98 | 0.5744 | |
|
| 0.3114 | 3.67 | 105 | 0.5741 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |