File size: 2,072 Bytes
72a3b76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-stop-classification-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-stop-classification-5
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1860
- Accuracy: 0.9326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6912 | 0.99 | 18 | 0.6572 | 0.6887 |
| 0.6092 | 1.97 | 36 | 0.5213 | 0.7636 |
| 0.4822 | 2.96 | 54 | 0.3353 | 0.8883 |
| 0.3866 | 4.0 | 73 | 0.2711 | 0.8978 |
| 0.3293 | 4.99 | 91 | 0.2208 | 0.9230 |
| 0.3004 | 5.97 | 109 | 0.2206 | 0.9237 |
| 0.2799 | 6.96 | 127 | 0.2097 | 0.9223 |
| 0.2688 | 8.0 | 146 | 0.1853 | 0.9305 |
| 0.2333 | 8.99 | 164 | 0.1850 | 0.9305 |
| 0.2461 | 9.86 | 180 | 0.1860 | 0.9326 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|