File size: 2,072 Bytes
72a3b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-stop-classification-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-stop-classification-5

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1860
- Accuracy: 0.9326

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6912        | 0.99  | 18   | 0.6572          | 0.6887   |
| 0.6092        | 1.97  | 36   | 0.5213          | 0.7636   |
| 0.4822        | 2.96  | 54   | 0.3353          | 0.8883   |
| 0.3866        | 4.0   | 73   | 0.2711          | 0.8978   |
| 0.3293        | 4.99  | 91   | 0.2208          | 0.9230   |
| 0.3004        | 5.97  | 109  | 0.2206          | 0.9237   |
| 0.2799        | 6.96  | 127  | 0.2097          | 0.9223   |
| 0.2688        | 8.0   | 146  | 0.1853          | 0.9305   |
| 0.2333        | 8.99  | 164  | 0.1850          | 0.9305   |
| 0.2461        | 9.86  | 180  | 0.1860          | 0.9326   |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2