File size: 2,314 Bytes
078d151
 
 
33b8133
078d151
 
 
 
 
 
 
 
f66203b
 
078d151
f66203b
 
 
 
 
 
 
078d151
33b8133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e10af5
33b8133
 
 
 
 
078d151
 
 
 
 
 
 
 
f66203b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
language:
- en
- hi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
datasets:
- cmu_hinglish_dog
---
# Loss Curve

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65187b234965add2b08b2990/f-qJHUQGxN9yaXym_5u4V.png)

# Evaluation Loss

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65187b234965add2b08b2990/6VsNF_rgDjXlubd4x8dMk.png)


# Colab Files:
- Model_Use.ipynb file to use the model
- Hinglish_train_lamma_3_8b_instruct_2_epoch.ipynb to see how the model is trained

# Inference:

```
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes
```

```python
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "suyash2739/English_to_Hinglish_lamma_3_8b_instruct",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
```

```python
prompt = """Translate the input from English to Hinglish to give the response.

### Input:
{}

### Response:
{}"""

```

```python

inputs = tokenizer(
[
  prompt.format(
        """This is a fine-tuned Hinglish translation model using Llama 3.""", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
```

```python
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
## ye ek fine-tuned Hinglish translation model hai jisme Llama 3 use kiya gaya hai

```



# Uploaded  model

- **Developed by:** suyash2739
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)