File size: 2,382 Bytes
905daca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ks
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-ks

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2562
- Accuracy: 0.9869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 16

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4691        | 0.99  | 26   | 2.3935          | 0.2310   |
| 2.1621        | 1.99  | 52   | 2.0155          | 0.3202   |
| 1.8731        | 2.99  | 78   | 1.6397          | 0.7929   |
| 1.4521        | 3.99  | 104  | 1.2337          | 0.8940   |
| 1.101         | 4.99  | 130  | 0.9519          | 0.9393   |
| 0.9401        | 5.99  | 156  | 0.7686          | 0.975    |
| 0.7463        | 6.99  | 182  | 0.6338          | 0.9774   |
| 0.6555        | 7.99  | 208  | 0.5214          | 0.9810   |
| 0.5095        | 8.99  | 234  | 0.4228          | 0.9869   |
| 0.4152        | 9.99  | 260  | 0.3658          | 0.9857   |
| 0.3764        | 10.99 | 286  | 0.3311          | 0.9857   |
| 0.3325        | 11.99 | 312  | 0.2954          | 0.9881   |
| 0.3121        | 12.99 | 338  | 0.2797          | 0.9869   |
| 0.281         | 13.99 | 364  | 0.2650          | 0.9857   |
| 0.2627        | 14.99 | 390  | 0.2571          | 0.9869   |
| 0.2655        | 15.99 | 416  | 0.2562          | 0.9869   |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 1.14.0
- Tokenizers 0.12.1