File size: 2,382 Bytes
905daca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ks
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-ks
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2562
- Accuracy: 0.9869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4691 | 0.99 | 26 | 2.3935 | 0.2310 |
| 2.1621 | 1.99 | 52 | 2.0155 | 0.3202 |
| 1.8731 | 2.99 | 78 | 1.6397 | 0.7929 |
| 1.4521 | 3.99 | 104 | 1.2337 | 0.8940 |
| 1.101 | 4.99 | 130 | 0.9519 | 0.9393 |
| 0.9401 | 5.99 | 156 | 0.7686 | 0.975 |
| 0.7463 | 6.99 | 182 | 0.6338 | 0.9774 |
| 0.6555 | 7.99 | 208 | 0.5214 | 0.9810 |
| 0.5095 | 8.99 | 234 | 0.4228 | 0.9869 |
| 0.4152 | 9.99 | 260 | 0.3658 | 0.9857 |
| 0.3764 | 10.99 | 286 | 0.3311 | 0.9857 |
| 0.3325 | 11.99 | 312 | 0.2954 | 0.9881 |
| 0.3121 | 12.99 | 338 | 0.2797 | 0.9869 |
| 0.281 | 13.99 | 364 | 0.2650 | 0.9857 |
| 0.2627 | 14.99 | 390 | 0.2571 | 0.9869 |
| 0.2655 | 15.99 | 416 | 0.2562 | 0.9869 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 1.14.0
- Tokenizers 0.12.1
|