metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-brainTumorData
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9911764705882353
- name: F1
type: f1
value: 0.9923273657289001
- name: Recall
type: recall
value: 0.9948717948717949
- name: Precision
type: precision
value: 0.9897959183673469
swin-tiny-patch4-window7-224-finetuned-brainTumorData
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0484
- Accuracy: 0.9912
- F1: 0.9923
- Recall: 0.9949
- Precision: 0.9898
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
0.3405 | 1.0 | 24 | 0.1137 | 0.9647 | 0.9688 | 0.9538 | 0.9841 |
0.2449 | 2.0 | 48 | 0.0811 | 0.9735 | 0.9766 | 0.9641 | 0.9895 |
0.1713 | 3.0 | 72 | 0.0613 | 0.9794 | 0.9818 | 0.9692 | 0.9947 |
0.1615 | 4.0 | 96 | 0.0484 | 0.9912 | 0.9923 | 0.9949 | 0.9898 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1