File size: 32,595 Bytes
55f3766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Evaluating a Whisper model on one or more speech recognition datasets.
"""
# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments.
import json
import logging
import os
import sys
import tempfile
import time
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
import torch
import transformers
from datasets import DatasetDict, IterableDatasetDict, load_dataset
from tqdm import tqdm
from transformers import (
HfArgumentParser,
WhisperForConditionalGeneration,
WhisperProcessor,
is_wandb_available,
pipeline,
set_seed,
)
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer, BasicTextNormalizer
from transformers.models.whisper.modeling_whisper import WhisperForCausalLM
from transformers.utils import check_min_version, is_accelerate_available
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
logger = logging.getLogger(__name__)
PIPELINE_BATCH_SIZE = 16
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
default=None,
metadata={
"help": "The name of the dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset hours by a '+' symbol."
},
)
model_name_or_path: str = field(
default=None,
metadata={"help": "The name of the model to use (via the transformers library). "},
)
subfolder: str = field(
default="",
metadata={"help": "If specified load weights from a subfolder in the model repository"},
)
model_variant: str = field(
default=None,
metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. "},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
assistant_model_name_or_path: str = field(
default=None,
metadata={
"help": "The name of the assistant model to use to do speculative decoding. If None, no speculative decoding will be done."
},
)
dtype: Optional[str] = field(
default="float16",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized"
" and the computations run. Choose one of `[float32, float16, bfloat16]`."
)
},
)
use_pipeline: bool = field(
default=False,
metadata={"help": "Whether to evaluate with Transformers pipeline"},
)
chunk_length_s: float = field(
default=30.0, metadata={"help": "Chunk length to use when `use_pipeline` is enabled."}
)
return_timestamps: bool = field(
default=True,
metadata={
"help": "Whether to decode with timestamps. This can help for improved WER for long form evaluation."
},
)
language: str = field(
default=None,
metadata={
"help": (
"Language for multilingual evaluation. This argument should be set for multilingual evaluation "
"only. For English speech recognition, it should be left as `None`."
)
},
)
task: str = field(
default="transcribe",
metadata={
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
"This argument should be set for multilingual evaluation only. For English speech recognition, it should be left as `None`."
},
)
attn_implementation: Optional[str] = field(
default=None,
metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"},
)
batch_size: int = field(
default=1,
metadata={"help": "The batch size to be used for generation."},
)
num_beams: int = field(
default=1,
metadata={"help": "The beam size to be used for evaluation. Set to 1 for greedy, or >1 for beam search."},
)
temperature_fallback: bool = field(
default=True,
metadata={"help": "Whether to use temperature fallback for evaluation."},
)
logprob_threshold: float = field(
default=-1.0,
metadata={"help": "Whether to use temperature fallback for evaluation."},
)
no_speech_threshold: float = field(
default=0.6,
metadata={
"help": "Only relevant for long-form transcription. If defined, the 'no-speech' token combined with the `logprob_threshold`"
"is used to determine whether a segment contains only silence. In this case, the transcription for this segment"
"is skipped."
},
)
compression_ratio_threshold: float = field(
default=1.35,
metadata={
"help": "Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of"
"a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is"
"repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates"
"suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. "
"If `compression_ratio_threshold` is defined make sure that `temperature` is a list of values. The default value for `compression_ratio_threshold` is 1.35."
},
)
condition_on_prev_tokens: bool = field(
default=False,
metadata={"help": "Whether to condition on previous tokens or not"},
)
samples_per_dataset: Optional[int] = field(
default=None,
metadata={"help": "Number of samples per dataset used to measure speed."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
)
dataset_split_name: Optional[str] = field(
default=None,
metadata={"help": "The split name of the dataset to use (via the datasets library)."},
)
dataset_cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to cache directory for saving and loading datasets"},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default=None,
metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."},
)
generation_max_length: int = field(
default=256, metadata={"help": "Generate up until `generation_max_length` tokens."}
)
log_predictions: Optional[bool] = field(
default=True,
metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is"
" especially useful when data preprocessing errors out in distributed"
" training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with"
" `preprocessing_only=True` so that the cached datasets can"
" consequently be loaded in distributed training"
)
},
)
wandb_project: str = field(
default="distil-whisper-speed-benchmark",
metadata={"help": "The name of the wandb project."},
)
wandb_name: str = field(
default=None,
metadata={"help": "The name of the wandb run."},
)
wandb_job_type: str = field(
default="distil-whisper",
metadata={"help": "The name of the wandb job type."},
)
wandb_dir: str = field(
default=None,
metadata={"help": "The absolute path to save the wandb logs."},
)
save_code_to_wandb: bool = field(
default=False,
metadata={
"help": (
"Whether to save main script to wandb. This is valuable for improving"
" experiment reproducibility and to diff code across experiments in"
" the UI."
)
},
)
streaming: bool = field(
default=True,
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."},
)
seed: int = field(default=42, metadata={"help": "RNG seed for reproducibility."})
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
prompt_text: str = field(
default=None,
metadata={
"help": "Text prompt to condition the generation on. Useful for controlling the style of transcription and predicting named entities."
},
)
def write_metric(summary_writer, eval_metrics, step, prefix="eval"):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"{prefix}/{metric_name}", value, step)
def write_wandb_metric(wandb_logger, metrics, prefix):
log_metrics = {}
for k, v in metrics.items():
log_metrics[f"{prefix}/{k}"] = v
wandb_logger.log(log_metrics)
def write_wandb_pred(
wandb_logger,
pred_str,
label_str,
norm_pred_str,
norm_label_str,
wer_per_sample,
prefix="eval",
):
columns = ["WER", "Target", "Pred", "Norm Target", "Norm Pred"]
# convert str data to a wandb compatible format
str_data = [
[wer_per_sample[i], label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]]
for i in range(len(pred_str))
]
# log as a table with the appropriate headers
wandb_logger.log(
{f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)},
)
def convert_dataset_str_to_list(
dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train"
):
if isinstance(dataset_names, str):
dataset_names = dataset_names.split("+")
# we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
for i in range(len(dataset_names)):
ds_name = dataset_names[i]
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name
dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None
splits = splits.split("+") if splits is not None else None
text_column_names = text_column_names.split("+") if text_column_names is not None else None
dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
raise ValueError(
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(dataset_config_names)} configs."
)
if splits is not None and len(splits) != len(dataset_names):
raise ValueError(
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
)
if text_column_names is not None and len(text_column_names) != len(dataset_names):
raise ValueError(
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(text_column_names)} text column names."
)
if dataset_hours is not None:
if len(dataset_hours) != len(dataset_names):
raise ValueError(
f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and "
f"{len(dataset_hours)} hours."
)
dataset_hours = [float(ds_hours) for ds_hours in dataset_hours]
else:
dataset_hours = [None] * len(dataset_names)
dataset_config_names = (
dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
)
text_column_names = (
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
)
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
dataset_names_dict = []
for i, ds_name in enumerate(dataset_names):
dataset_names_dict.append(
{
"name": ds_name,
"config": dataset_config_names[i],
"split": splits[i],
"text_column_name": text_column_names[i],
"hours": dataset_hours[i],
}
)
return dataset_names_dict
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser([DataTrainingArguments])
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
else:
data_args = parser.parse_args_into_dataclasses()[0]
# 2. Setup logging
# Make one log on every process with the configuration for debugging.
logger.setLevel(logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# 3. Set seed for reproducibility
set_seed(data_args.seed)
if data_args.use_pipeline and data_args.batch_size > 1:
raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.")
has_wandb = is_wandb_available()
if has_wandb:
import wandb
import wandb as wandb_logger
# store generation HPs for runs
generation_arguments = {
"torch_version": str(torch.__version__),
"transformers_version": str(transformers.__version__),
"attn_implementation": data_args.attn_implementation,
"model_name_or_path": data_args.model_name_or_path,
"subfolder": data_args.subfolder,
"assistant_model_name_or_path": data_args.assistant_model_name_or_path,
"seed": data_args.seed,
"batch_size": data_args.batch_size,
"num_beams": data_args.num_beams,
"return_timestamps": data_args.return_timestamps,
"condition_on_prev_tokens": data_args.condition_on_prev_tokens,
"temperature_fallback": data_args.temperature_fallback,
"logprob_threshold": data_args.logprob_threshold,
"no_speech_threshold": data_args.no_speech_threshold,
"use_pipeline": data_args.use_pipeline,
"chunk_length_s": data_args.chunk_length_s,
}
# Set up wandb run
wandb_logger.init(
project=data_args.wandb_project,
name=data_args.wandb_name,
job_type=data_args.wandb_job_type,
dir=data_args.wandb_dir,
save_code=data_args.save_code_to_wandb,
config=generation_arguments,
)
else:
raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")
# 3. Load dataset
raw_datasets = IterableDatasetDict()
# Convert lists of dataset names/configs/splits to a dict
# names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation"
# -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"}
dataset_names_dict = convert_dataset_str_to_list(
data_args.dataset_name,
data_args.dataset_config_name,
splits=data_args.dataset_split_name,
text_column_names=data_args.text_column_name,
)
# load multiple eval sets
for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."):
sub_dataset = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
cache_dir=data_args.dataset_cache_dir,
streaming=data_args.streaming,
num_proc=data_args.preprocessing_num_workers,
)
if dataset_dict["text_column_name"] not in list(sub_dataset.features.keys()):
raise ValueError(
f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation "
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column "
f"for the target text. Should be one of {' '.join(list(sub_dataset.features.keys()))}"
)
if dataset_dict["text_column_name"] != "text":
sub_dataset = sub_dataset.rename_column(dataset_dict["text_column_name"], "text")
if not data_args.streaming:
sub_dataset = sub_dataset.to_iterable_dataset()
# Clean-up the dataset name for pretty logging
# ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean"
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
raw_datasets[pretty_name] = sub_dataset
# 5. Load pretrained model, tokenizer, and feature extractor
processor = WhisperProcessor.from_pretrained(
data_args.model_name_or_path,
subfolder=data_args.subfolder,
cache_dir=data_args.cache_dir,
use_fast=data_args.use_fast_tokenizer,
)
dtype = getattr(torch, data_args.dtype)
model = WhisperForConditionalGeneration.from_pretrained(
data_args.model_name_or_path,
subfolder=data_args.subfolder,
torch_dtype=dtype,
attn_implementation=data_args.attn_implementation,
low_cpu_mem_usage=is_accelerate_available(),
cache_dir=data_args.cache_dir,
variant=data_args.model_variant,
)
model.to("cuda:0", dtype=dtype)
model_pipeline = None
if data_args.use_pipeline:
model_pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=dtype,
device=model.device,
chunk_length_s=data_args.chunk_length_s,
)
model_pipeline_forward = model_pipeline._forward
assistant_model = None
if data_args.assistant_model_name_or_path is not None:
logger.info("Loading assistant model...")
if data_args.assistant_model_name_or_path.startswith("openai"):
assistant_model = WhisperForConditionalGeneration.from_pretrained(
data_args.assistant_model_name_or_path,
torch_dtype=dtype,
attn_implementation=data_args.attn_implementation,
low_cpu_mem_usage=is_accelerate_available(),
cache_dir=data_args.cache_dir,
)
else:
assistant_model = WhisperForCausalLM.from_pretrained(
data_args.assistant_model_name_or_path,
torch_dtype=dtype,
attn_implementation=data_args.attn_implementation,
low_cpu_mem_usage=is_accelerate_available(),
cache_dir=data_args.cache_dir,
)
assistant_model.cuda()
# 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name,
datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate),
)
# 7. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
audio_column_name = data_args.audio_column_name
normalizer = (
BasicTextNormalizer() if data_args.language is not None
else EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer)
)
sampling_rate = processor.feature_extractor.sampling_rate
if data_args.samples_per_dataset is not None:
for split in raw_datasets:
raw_datasets[split] = raw_datasets[split].take(data_args.samples_per_dataset)
def prepare_dataset(batch):
# process audio
audio = [sample["array"].astype(np.float32) for sample in batch[audio_column_name]]
if model_pipeline is None:
inputs = processor.feature_extractor(
audio,
sampling_rate=sampling_rate,
return_tensors="pt",
truncation=False,
padding="longest",
return_attention_mask=True,
)
if inputs.input_features.shape[-1] < 3000:
inputs = processor.feature_extractor(
audio,
sampling_rate=sampling_rate,
return_tensors="pt",
return_attention_mask=True,
)
batch["input_features"] = inputs.input_features.to(dtype)
batch["attention_mask"] = inputs.attention_mask
else:
batch["input_features"] = audio
# process audio length
batch["length_in_s"] = [len(sample) / sampling_rate for sample in audio]
# process targets
batch["reference"] = batch["text"]
return batch
vectorized_datasets = IterableDatasetDict()
for split in raw_datasets:
raw_datasets_features = list(raw_datasets[split].features.keys())
vectorized_datasets[split] = raw_datasets[split].map(
function=prepare_dataset,
remove_columns=raw_datasets_features,
batch_size=data_args.batch_size,
batched=True,
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
metric = evaluate.load("wer")
def compute_metrics(pred_str, label_str):
# normalize everything and re-compute the WER
norm_pred_str = [normalizer(pred) for pred in pred_str]
norm_label_str = [normalizer(label) for label in label_str]
# filtering step to only evaluate the samples that correspond to non-zero normalized references:
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
return wer
gen_kwargs = {
"max_length": data_args.generation_max_length,
"return_timestamps": data_args.return_timestamps,
"num_beams": data_args.num_beams,
"top_k": 0,
}
if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
gen_kwargs["language"] = data_args.language
gen_kwargs["task"] = data_args.task
elif data_args.language is not None:
raise ValueError(
"Setting language token for an English-only checkpoint is not permitted. The language argument should "
"only be set for multilingual checkpoints."
)
if assistant_model is not None:
gen_kwargs["assistant_model"] = assistant_model
if data_args.prompt_text is not None:
gen_kwargs["prompt_ids"] = processor.get_prompt_ids(data_args.prompt_text, return_tensors="pt").to("cuda:0")
long_form_gen_kwargs = {
"condition_on_prev_tokens": data_args.condition_on_prev_tokens,
"compression_ratio_threshold": data_args.compression_ratio_threshold,
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) if data_args.temperature_fallback else 0,
"logprob_threshold": data_args.logprob_threshold,
"no_speech_threshold": data_args.no_speech_threshold,
}
def benchmark(batch):
if model_pipeline is None:
inputs = torch.stack(batch["input_features"], dim=0).cuda()
attention_mask = torch.stack(batch["attention_mask"], dim=0).cuda()
# automatically use long-form args if required
inner_batch_size, num_mels, seq_len = inputs.shape
if seq_len == 3000:
batch_gen_kwargs = gen_kwargs
else:
batch_gen_kwargs = {**gen_kwargs, **long_form_gen_kwargs}
set_seed(data_args.seed)
start_time = time.time()
output_ids = model.generate(inputs, attention_mask=attention_mask, **batch_gen_kwargs)
batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size]
batch["transcription"] = processor.batch_decode(
output_ids, skip_special_tokens=True, decode_with_timestamps=data_args.return_timestamps
)
else:
inputs = batch["input_features"]
# Time forward: let's make sure that only forward is timed and not pre- and post-processing
time_result = []
def _forward_time(*args, **kwargs):
start_time = time.time()
result = model_pipeline_forward(*args, **kwargs)
end_time = time.time() - start_time
time_result.append(end_time)
return result
model_pipeline._forward = _forward_time
result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"]
batch["transcription"] = [result]
batch["time"] = [sum(time_result)]
batch["num_words"] = [len(r.split()) for r in batch["reference"]]
return batch
result_datasets = DatasetDict()
for split in vectorized_datasets:
result_datasets[split] = vectorized_datasets[split].map(
function=benchmark,
remove_columns=["input_features"],
batch_size=data_args.batch_size,
batched=True,
)
stats_dataset = DatasetDict()
all_stats = {"rtf": 0, "wer": 0}
rtf_stats = {
"times_audio_total": 0,
"times_transcription_total": 0,
}
logger.info("***** Running Evaluation *****")
for key in generation_arguments:
logger.info(f" {key}: {generation_arguments[key]}")
datasets_evaluated_progress_bar = tqdm(result_datasets, desc="Datasets", position=0)
for split in datasets_evaluated_progress_bar:
transcriptions = []
references = []
stats = {}
times_audio_total = 0
times_transcription_total = 0
datasets_evaluated_progress_bar.write(f"Start benchmarking {split}...")
result_iter = iter(result_datasets[split])
for result in tqdm(result_iter, desc="Samples", position=1):
times_audio_total += result["length_in_s"]
times_transcription_total += result["time"]
# ensure prompt is removed from the transcription (awaiting fix in Transformers)
if data_args.prompt_text is not None:
result["transcription"] = result["transcription"].replace(data_args.prompt_text, "")
transcriptions.append(result["transcription"])
references.append(result["reference"])
norm_transcriptions = [normalizer(pred) for pred in transcriptions]
norm_references = [normalizer(label) for label in references]
transcriptions = [transcriptions[i] for i in range(len(transcriptions)) if len(norm_references[i]) > 0]
references = [references[i] for i in range(len(references)) if len(norm_references[i]) > 0]
norm_transcriptions = [
norm_transcriptions[i] for i in range(len(norm_transcriptions)) if len(norm_references[i]) > 0
]
norm_references = [norm_references[i] for i in range(len(norm_references)) if len(norm_references[i]) > 0]
stats["wer"] = compute_metrics(norm_transcriptions, norm_references)
wer_per_sample = []
for pred, ref in zip(norm_transcriptions, norm_references):
wer_per_sample.append(compute_metrics([pred], [ref]))
stats["rtf"] = times_audio_total / times_transcription_total
stats_dataset[split] = stats
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in stats.items()])
datasets_evaluated_progress_bar.write(wer_desc)
write_wandb_metric(wandb_logger, stats, prefix=split)
if data_args.log_predictions:
write_wandb_pred(
wandb_logger,
transcriptions,
references,
norm_transcriptions,
norm_references,
wer_per_sample,
prefix=split,
)
rtf_stats["times_audio_total"] += times_audio_total
rtf_stats["times_transcription_total"] += times_transcription_total
all_stats["wer"] += stats["wer"]
all_stats["wer"] = all_stats["wer"] / len(result_datasets)
# technically this is the reciprocal of the RTF, but it makes the scale easier to read on wandb
all_stats["rtf"] = rtf_stats["times_audio_total"] / rtf_stats["times_transcription_total"]
stats_dataset["all"] = all_stats
write_wandb_metric(wandb_logger, all_stats, prefix="all")
benchmark_artifact = wandb.Artifact("Benchmark", type="datasets")
with tempfile.TemporaryDirectory() as temp_dir:
for split in stats_dataset:
file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json")
with open(file_name, "w") as json_file:
json.dump(stats_dataset[split], json_file)
benchmark_artifact.add_file(file_name, split)
wandb_logger.log_artifact(benchmark_artifact)
if __name__ == "__main__":
main()
|