File size: 2,886 Bytes
bb177d3 120bad2 bb177d3 120bad2 bb177d3 fcf6570 bb177d3 120bad2 bb177d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- physician_dictation_gpt_4_turbo
metrics:
- wer
model-index:
- name: Whisper Large v3 Physician Dictation GPT 4 turbo
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Physician Dictation GPT 4 Turbo
type: physician_dictation_gpt_4_turbo
config: default
split: None
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 5.349683331087454
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v3 Physician Dictation GPT 4 turbo
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Physician Dictation GPT 4 Turbo dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1660
- Wer: 5.3497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 8500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.0143 | 3.9683 | 500 | 0.1068 | 4.9948 |
| 0.0023 | 7.9365 | 1000 | 0.1287 | 5.0757 |
| 0.0026 | 11.9048 | 1500 | 0.1254 | 4.9409 |
| 0.0003 | 15.8730 | 2000 | 0.1298 | 4.7298 |
| 0.001 | 19.8413 | 2500 | 0.1312 | 5.0173 |
| 0.0001 | 23.8095 | 3000 | 0.1405 | 5.2374 |
| 0.0001 | 27.7778 | 3500 | 0.1454 | 4.9903 |
| 0.0001 | 31.7460 | 4000 | 0.1497 | 5.2104 |
| 0.0 | 35.7143 | 4500 | 0.1531 | 5.1835 |
| 0.0 | 39.6825 | 5000 | 0.1558 | 5.1431 |
| 0.0 | 43.6508 | 5500 | 0.1581 | 5.1296 |
| 0.0 | 47.6190 | 6000 | 0.1601 | 5.1700 |
| 0.0 | 51.5873 | 6500 | 0.1619 | 5.1925 |
| 0.0 | 55.5556 | 7000 | 0.1635 | 5.2329 |
| 0.0 | 59.5238 | 7500 | 0.1648 | 5.2733 |
| 0.0 | 63.4921 | 8000 | 0.1656 | 5.3362 |
| 0.0 | 67.4603 | 8500 | 0.1660 | 5.3497 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|