|
--- |
|
tags: |
|
- image-classification |
|
- pytorch |
|
library_name: generic |
|
metrics: |
|
- accuracy |
|
|
|
model-index: |
|
- name: krenzcolor_chkpt_classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: pair-classification |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9196428656578064 |
|
--- |
|
|
|
# krenzcolor_chkpt_classifier |
|
## KK色彩課程-作業節點檢查AI |
|
Demo for checkpoint classification of the homework in Art course by "Krenz Cushart" |
|
|
|
這個AI分類器會判斷同學在課程中L3,L4的臨摹中的三個檢查點,並檢查通過與否。 |
|
詳細六個類別如下: |
|
- (1) chk1_fail | (2) chk1_pass |
|
- (3) chk2_fail | (4) chk2_pass |
|
- (5) chk3_fail | (6) chk3_pass |
|
|
|
其中chk1,chk2,chk3分別代表檢查點一、二、三;fail及pass代表作業通過與否。 |
|
|
|
|
|
## 快速導覽: |
|
將以下圖片拖曳至右側方框 (Hosted inference API) |
|
|
|
Note: 第一次讀取model的時候會跑比較久:~20秒 |
|
#### chk1_pass |
|
|
|
![chk1_pass](images/L4_1_chk1_pass.jpg) |
|
|
|
#### chk2_pass |
|
|
|
![chk2_pass](images/L4_1_chk2_pass.jpg) |
|
|
|
#### chk3_pass |
|
|
|
![chk3_pass](images/L4_1_chk3_pass.jpg) |
|
|
|
|
|
|
|
## 使用方法 |
|
### 使用以下樣板填入臨摹 |
|
|
|
注意:務必將圖調整至224 x 224 pixels的大小再放入樣板右側空白處 |
|
![L3-1老頭石膏](images/L3_1_tmp.jpg) |
|
|
|
![L3-2布料](images/L3_2_tmp.jpg) |
|
|
|
![L3-1雞](images/L4_1_tmp.jpg) |
|
|
|
![L3-1雲](images/L4_2_tmp.jpg) |
|
|
|
### 將圖片上傳到右側方匡 |
|
![將圖片上傳到右側方匡](images/input_box.png) |
|
|
|
### 上傳後會顯示各類別的機率 |
|
![範例](images/example.png) |
|
|