File size: 5,515 Bytes
57e04e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import logging

import datasets
from datasets import load_dataset
import torch
import transformers
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
from typing import Dict, List

logger = logging.getLogger(__name__)

"""
# multi-gpu training
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch  --gradient_clipping=1.0  --multi_gpu   --num_processes=8   --num_machines=1   --mixed_precision=bf16   --zero_stage=3   sft_fast.py
# single-gpu training
CUDA_VISIBLE_DEVICES=0 accelerate launch  --gradient_clipping=1.0  --mixed_precision=bf16   --zero_stage=3   sft.py
# use tmux to train it in the background
tmux new -d -s training "CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch  --gradient_clipping=1.0  --multi_gpu   --num_processes=8   --num_machines=1   --mixed_precision=bf16   --zero_stage=3   sft.py"
"""

###################
# Hyper-parameters
###################

# NOTICE: the global batch size has to be at least 512. When you using different number of GPUs, please adjust the gradient accumulation steps
# the global batch size = gradient_accumulation_steps * num_gpus * per_device_train_batch_size
training_config = {
    "bf16": True,
    "do_eval": False,
    "learning_rate": 5e-06,
    "log_level": "info",
    "logging_steps": 20,
    "logging_strategy": "steps",
    "lr_scheduler_type": "cosine",
    "num_train_epochs": 3.0,
    "max_steps": -1,
    "output_dir": "./share_gpt_sft",
    "overwrite_output_dir": True,
    "per_device_eval_batch_size": 1,
    "per_device_train_batch_size": 1,
    "remove_unused_columns": True,
    "save_steps": 1000,
    "save_total_limit": 1,
    "seed": 0,
    "gradient_checkpointing": True,
    "gradient_checkpointing_kwargs":{"use_reentrant": False},
    "gradient_accumulation_steps": 4,
    "warmup_ratio": 0.03,
    "ddp_find_unused_parameters": True,
    }
train_conf = TrainingArguments(**training_config)


###############
# Setup logging
###############
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = train_conf.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()

# Log on each process a small summary
logger.warning(
    f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
    + f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
)
logger.info(f"Training/evaluation parameters {train_conf}")


################
# Model Loading
################

checkpoint_path = "./"
model_kwargs = dict(
    use_cache=False,
    trust_remote_code=True,
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map=None
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.model_max_length = 2048
tokenizer.pad_token = tokenizer.eos_token  # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
tokenizer.padding_side = 'right'


##################
# Data Processing
##################
def load_sharegpt_dataset(file_path: str):
    dataset = load_dataset('json', data_files=file_path)
    return dataset

def apply_chat_template(
    example: Dict,
    tokenizer: AutoTokenizer,
    max_length: int = None
) -> Dict:
    messages = example["conversations"]
    converted_messages = []
    
    role_mapping = {
        'human': 'user',
        'gpt': 'assistant'
    }
    
    for message in messages:
        role = message['from']
        content = message['value']
        
        role = role_mapping.get(role, role)
        
        converted_messages.append({
            'content': content,
            'role': role
        })
    
    example["text"] = tokenizer.apply_chat_template(
        converted_messages,
        tokenize=False,
        add_generation_prompt=False
    )
    
    return example

def process_dataset(
    dataset_path: str,
    tokenizer: AutoTokenizer,
    num_proc: int = 64,
    max_length: int = None
):

    dataset = load_sharegpt_dataset(dataset_path)
    column_names = list(dataset['train'].features)
    processed_dataset = dataset['train'].map(
        apply_chat_template,
        fn_kwargs={
            "tokenizer": tokenizer,
            "max_length": max_length
        },
        num_proc=num_proc,
        remove_columns=column_names,
        desc="Applying chat template"
    )
    
    return processed_dataset



processed_dataset = process_dataset(
    dataset_path="./ShareGPT_40k.json",
    tokenizer=tokenizer,
    num_proc=64
)



###########
# Training
###########
trainer = SFTTrainer(
    model=model,
    args=train_conf,
    peft_config=None,
    train_dataset=processed_dataset,
    eval_dataset=None,
    max_seq_length=2048,
    dataset_text_field="text",
    tokenizer=tokenizer,
    packing=False
)

train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()

# ############
# # Save model
# ############
trainer.save_model(train_conf.output_dir)