stephen-steckler commited on
Commit
fb60e3a
·
1 Parent(s): 21afd68

Upload 41 files

Browse files
Files changed (41) hide show
  1. README.md +167 -0
  2. adapter_config.json +28 -0
  3. adapter_model.bin +3 -0
  4. checkpoint-1406/README.md +219 -0
  5. checkpoint-1406/adapter_config.json +28 -0
  6. checkpoint-1406/adapter_model.bin +3 -0
  7. checkpoint-1406/optimizer.pt +3 -0
  8. checkpoint-1406/rng_state_0.pth +3 -0
  9. checkpoint-1406/rng_state_1.pth +3 -0
  10. checkpoint-1406/rng_state_2.pth +3 -0
  11. checkpoint-1406/rng_state_3.pth +3 -0
  12. checkpoint-1406/scheduler.pt +3 -0
  13. checkpoint-1406/trainer_state.json +0 -0
  14. checkpoint-1406/training_args.bin +3 -0
  15. checkpoint-2109/README.md +219 -0
  16. checkpoint-2109/adapter_config.json +28 -0
  17. checkpoint-2109/adapter_model.bin +3 -0
  18. checkpoint-2109/optimizer.pt +3 -0
  19. checkpoint-2109/rng_state_0.pth +3 -0
  20. checkpoint-2109/rng_state_1.pth +3 -0
  21. checkpoint-2109/rng_state_2.pth +3 -0
  22. checkpoint-2109/rng_state_3.pth +3 -0
  23. checkpoint-2109/scheduler.pt +3 -0
  24. checkpoint-2109/trainer_state.json +0 -0
  25. checkpoint-2109/training_args.bin +3 -0
  26. checkpoint-703/README.md +219 -0
  27. checkpoint-703/adapter_config.json +28 -0
  28. checkpoint-703/adapter_model.bin +3 -0
  29. checkpoint-703/optimizer.pt +3 -0
  30. checkpoint-703/rng_state_0.pth +3 -0
  31. checkpoint-703/rng_state_1.pth +3 -0
  32. checkpoint-703/rng_state_2.pth +3 -0
  33. checkpoint-703/rng_state_3.pth +3 -0
  34. checkpoint-703/scheduler.pt +3 -0
  35. checkpoint-703/trainer_state.json +4517 -0
  36. checkpoint-703/training_args.bin +3 -0
  37. config.json +39 -0
  38. runs/Nov15_09-59-18_compute-3-6.hamming.cluster/events.out.tfevents.1700071160.compute-3-6.hamming.cluster.45622.0 +3 -0
  39. special_tokens_map.json +24 -0
  40. tokenizer.model +3 -0
  41. tokenizer_config.json +44 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: mid-nids
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ # mid-nids
15
+
16
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0342
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0002
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 8
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 3
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss |
54
+ |:-------------:|:-----:|:----:|:---------------:|
55
+ | 0.0682 | 0.03 | 20 | 0.0982 |
56
+ | 0.0895 | 0.06 | 40 | 0.0792 |
57
+ | 0.015 | 0.09 | 60 | 0.0405 |
58
+ | 0.0376 | 0.11 | 80 | 0.0357 |
59
+ | 0.0196 | 0.14 | 100 | 0.0342 |
60
+ | 0.0219 | 0.17 | 120 | 0.0334 |
61
+ | 0.0188 | 0.2 | 140 | 0.0317 |
62
+ | 0.0147 | 0.23 | 160 | 0.0365 |
63
+ | 0.0224 | 0.26 | 180 | 0.0388 |
64
+ | 0.0116 | 0.28 | 200 | 0.0504 |
65
+ | 0.0158 | 0.31 | 220 | 0.0692 |
66
+ | 0.0193 | 0.34 | 240 | 0.0407 |
67
+ | 0.0181 | 0.37 | 260 | 0.0443 |
68
+ | 0.0124 | 0.4 | 280 | 0.0482 |
69
+ | 0.0094 | 0.43 | 300 | 0.0549 |
70
+ | 0.0081 | 0.46 | 320 | 0.0341 |
71
+ | 0.0188 | 0.48 | 340 | 0.0401 |
72
+ | 0.021 | 0.51 | 360 | 0.0508 |
73
+ | 0.0125 | 0.54 | 380 | 0.0409 |
74
+ | 0.0071 | 0.57 | 400 | 0.0424 |
75
+ | 0.0165 | 0.6 | 420 | 0.0566 |
76
+ | 0.0075 | 0.63 | 440 | 0.0537 |
77
+ | 0.0096 | 0.65 | 460 | 0.0338 |
78
+ | 0.012 | 0.68 | 480 | 0.0489 |
79
+ | 0.0041 | 0.71 | 500 | 0.0442 |
80
+ | 0.0012 | 0.74 | 520 | 0.0439 |
81
+ | 0.0096 | 0.77 | 540 | 0.0381 |
82
+ | 0.005 | 0.8 | 560 | 0.0449 |
83
+ | 0.0239 | 0.83 | 580 | 0.0452 |
84
+ | 0.0166 | 0.85 | 600 | 0.0383 |
85
+ | 0.0081 | 0.88 | 620 | 0.0249 |
86
+ | 0.0166 | 0.91 | 640 | 0.0442 |
87
+ | 0.0106 | 0.94 | 660 | 0.0327 |
88
+ | 0.0161 | 0.97 | 680 | 0.0386 |
89
+ | 0.0038 | 1.0 | 700 | 0.0377 |
90
+ | 0.0029 | 1.02 | 720 | 0.0367 |
91
+ | 0.0164 | 1.05 | 740 | 0.0276 |
92
+ | 0.0128 | 1.08 | 760 | 0.0259 |
93
+ | 0.0108 | 1.11 | 780 | 0.0294 |
94
+ | 0.026 | 1.14 | 800 | 0.0285 |
95
+ | 0.0104 | 1.17 | 820 | 0.0297 |
96
+ | 0.0102 | 1.19 | 840 | 0.0271 |
97
+ | 0.0111 | 1.22 | 860 | 0.0293 |
98
+ | 0.0088 | 1.25 | 880 | 0.0305 |
99
+ | 0.0116 | 1.28 | 900 | 0.0250 |
100
+ | 0.0066 | 1.31 | 920 | 0.0442 |
101
+ | 0.0061 | 1.34 | 940 | 0.0309 |
102
+ | 0.0173 | 1.37 | 960 | 0.0231 |
103
+ | 0.0032 | 1.39 | 980 | 0.0230 |
104
+ | 0.0119 | 1.42 | 1000 | 0.0401 |
105
+ | 0.0083 | 1.45 | 1020 | 0.0274 |
106
+ | 0.0047 | 1.48 | 1040 | 0.0359 |
107
+ | 0.0221 | 1.51 | 1060 | 0.0301 |
108
+ | 0.0038 | 1.54 | 1080 | 0.0280 |
109
+ | 0.0052 | 1.56 | 1100 | 0.0235 |
110
+ | 0.0084 | 1.59 | 1120 | 0.0323 |
111
+ | 0.012 | 1.62 | 1140 | 0.0320 |
112
+ | 0.0019 | 1.65 | 1160 | 0.0256 |
113
+ | 0.0175 | 1.68 | 1180 | 0.0300 |
114
+ | 0.0078 | 1.71 | 1200 | 0.0362 |
115
+ | 0.0088 | 1.74 | 1220 | 0.0310 |
116
+ | 0.0065 | 1.76 | 1240 | 0.0301 |
117
+ | 0.0059 | 1.79 | 1260 | 0.0348 |
118
+ | 0.0066 | 1.82 | 1280 | 0.0341 |
119
+ | 0.0015 | 1.85 | 1300 | 0.0280 |
120
+ | 0.0091 | 1.88 | 1320 | 0.0266 |
121
+ | 0.0053 | 1.91 | 1340 | 0.0350 |
122
+ | 0.0077 | 1.93 | 1360 | 0.0333 |
123
+ | 0.0081 | 1.96 | 1380 | 0.0320 |
124
+ | 0.0129 | 1.99 | 1400 | 0.0391 |
125
+ | 0.0082 | 2.02 | 1420 | 0.0388 |
126
+ | 0.008 | 2.05 | 1440 | 0.0212 |
127
+ | 0.0025 | 2.08 | 1460 | 0.0362 |
128
+ | 0.0006 | 2.11 | 1480 | 0.0289 |
129
+ | 0.0034 | 2.13 | 1500 | 0.0347 |
130
+ | 0.0115 | 2.16 | 1520 | 0.0313 |
131
+ | 0.0061 | 2.19 | 1540 | 0.0297 |
132
+ | 0.0065 | 2.22 | 1560 | 0.0335 |
133
+ | 0.0144 | 2.25 | 1580 | 0.0379 |
134
+ | 0.0075 | 2.28 | 1600 | 0.0300 |
135
+ | 0.0093 | 2.3 | 1620 | 0.0322 |
136
+ | 0.0091 | 2.33 | 1640 | 0.0313 |
137
+ | 0.0051 | 2.36 | 1660 | 0.0278 |
138
+ | 0.0046 | 2.39 | 1680 | 0.0294 |
139
+ | 0.0004 | 2.42 | 1700 | 0.0283 |
140
+ | 0.0054 | 2.45 | 1720 | 0.0296 |
141
+ | 0.0034 | 2.48 | 1740 | 0.0337 |
142
+ | 0.0065 | 2.5 | 1760 | 0.0341 |
143
+ | 0.0034 | 2.53 | 1780 | 0.0345 |
144
+ | 0.0114 | 2.56 | 1800 | 0.0371 |
145
+ | 0.0044 | 2.59 | 1820 | 0.0377 |
146
+ | 0.0086 | 2.62 | 1840 | 0.0344 |
147
+ | 0.0065 | 2.65 | 1860 | 0.0332 |
148
+ | 0.0051 | 2.67 | 1880 | 0.0344 |
149
+ | 0.008 | 2.7 | 1900 | 0.0355 |
150
+ | 0.0035 | 2.73 | 1920 | 0.0351 |
151
+ | 0.0065 | 2.76 | 1940 | 0.0352 |
152
+ | 0.0097 | 2.79 | 1960 | 0.0347 |
153
+ | 0.0034 | 2.82 | 1980 | 0.0347 |
154
+ | 0.0054 | 2.84 | 2000 | 0.0348 |
155
+ | 0.0045 | 2.87 | 2020 | 0.0344 |
156
+ | 0.0032 | 2.9 | 2040 | 0.0343 |
157
+ | 0.0072 | 2.93 | 2060 | 0.0342 |
158
+ | 0.0074 | 2.96 | 2080 | 0.0344 |
159
+ | 0.0111 | 2.99 | 2100 | 0.0342 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - Transformers 4.34.1
165
+ - Pytorch 2.0.1+cu117
166
+ - Datasets 2.14.6
167
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "gate_proj",
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d0ae85e5ae693f1d3caedf19e7bc8bf0a88cacb6e12f3a18c57c205e44d9e20
3
+ size 319977229
checkpoint-1406/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.7.0.dev0
checkpoint-1406/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "gate_proj",
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1406/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05099d9c30a39fff51fb853b86eb10cffb2721398dbfce005395f1151f60dd49
3
+ size 319977229
checkpoint-1406/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90d2a4ae9032069d56ba507908d535003ab01b499498f5d16d847f03c156e772
3
+ size 160736095
checkpoint-1406/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6bb1fdbde844889354bbb27d1d1a5675bdcbd5078d10eb563ee7898fd4971df
3
+ size 17655
checkpoint-1406/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329b9fd81ba172a415c020ca29f9a1dede713ba98ea6ac90b9017b5ebe54c4c8
3
+ size 17655
checkpoint-1406/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:387a69e82135d50bd7039ecf3bf58d4d374eaa89f6f3c7c9d10e5f7c32043100
3
+ size 17655
checkpoint-1406/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:792356ca922c0cec662b13eafaf604e762b721920d72aba037aae47c2d413d43
3
+ size 17655
checkpoint-1406/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd4cfbb0692c3156463e2efb538441a09b4307943dba5d25113ec0576f73c832
3
+ size 627
checkpoint-1406/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1406/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f130e25197a3f46f0428131d8b9093939760918998e06b5589ad2fbdf87ef81f
3
+ size 4475
checkpoint-2109/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.7.0.dev0
checkpoint-2109/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "gate_proj",
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-2109/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d0ae85e5ae693f1d3caedf19e7bc8bf0a88cacb6e12f3a18c57c205e44d9e20
3
+ size 319977229
checkpoint-2109/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c17bc205dae87cc849562081ac3cf5ffe991d131ee665b097ce292a756bc5c
3
+ size 160736095
checkpoint-2109/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d073a1dc64070b7ab3e6f0b3ed16937bb52420f0f27e4540c746ec2fb338a141
3
+ size 17655
checkpoint-2109/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e5a3baca4b10907079198dcab43f9e007a1662540e40125c81f0b267ab0fcd
3
+ size 17655
checkpoint-2109/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f79cae11deaee0f8c12f55aa4a85fbfe74293242362487bfe5c9ee4f530b839b
3
+ size 17655
checkpoint-2109/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b028b8cf231033635774a069f1817a4fdd89b4ca6e3f975beff5be9b7284301f
3
+ size 17655
checkpoint-2109/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5cbc89a7ad3b176f3e4280e5d7af393a38483dccfc4ed5392d2ffc95ea80596
3
+ size 627
checkpoint-2109/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2109/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f130e25197a3f46f0428131d8b9093939760918998e06b5589ad2fbdf87ef81f
3
+ size 4475
checkpoint-703/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.7.0.dev0
checkpoint-703/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "gate_proj",
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-703/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd296b190634d7ee3d22bc12a549ad7a41cf711d206bf10427fbbd9ffe8eaa9
3
+ size 319977229
checkpoint-703/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c4b64927aace0017b60ec20ed2a22f68860e113a76da0de3724b02952a55ed
3
+ size 160736095
checkpoint-703/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:345bbf15aacbe08f2f1dfb6b26a436b94ed679269cb367dde8c8a42ae5bf45f3
3
+ size 17655
checkpoint-703/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b2bc682b1de5dbfb1597197e083b20aff56186d3a169940aaa8ecbb08260a79
3
+ size 17655
checkpoint-703/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6ab98ea00f614bad9166313e822626a8383231e46c3f3976a432613f2da385
3
+ size 17655
checkpoint-703/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:718ffd8973acd4841f384fc506cafbe064bb741a55110272379940724339a1de
3
+ size 17655
checkpoint-703/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eab06f7e8dfbe551c13ec2568e8dbb7992d97e08889a8a4806742e6b7aded904
3
+ size 627
checkpoint-703/trainer_state.json ADDED
@@ -0,0 +1,4517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 20,
6
+ "global_step": 703,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 5.8403,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 5.8714,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 5.7358,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 5.368,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 4.4602,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.00012,
44
+ "loss": 3.3684,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00014,
50
+ "loss": 2.4129,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.00016,
56
+ "loss": 1.4315,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 0.00018,
62
+ "loss": 0.529,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.01,
67
+ "learning_rate": 0.0002,
68
+ "loss": 0.2216,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.0001999998879930964,
74
+ "loss": 0.2577,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00019999955197263648,
80
+ "loss": 0.1995,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.00019999899193937299,
86
+ "loss": 0.0976,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.00019999820789456046,
92
+ "loss": 0.2842,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 0.00019999719983995528,
98
+ "loss": 0.121,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 0.00019999596777781563,
104
+ "loss": 0.0472,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.02,
109
+ "learning_rate": 0.00019999451171090149,
110
+ "loss": 0.0736,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.00019999283164247466,
116
+ "loss": 0.1005,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.00019999092757629872,
122
+ "loss": 0.087,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 0.00019998879951663902,
128
+ "loss": 0.0682,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "eval_loss": 0.09823722392320633,
134
+ "eval_runtime": 23.24,
135
+ "eval_samples_per_second": 43.029,
136
+ "eval_steps_per_second": 10.757,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.03,
141
+ "learning_rate": 0.00019998644746826275,
142
+ "loss": 0.1509,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "learning_rate": 0.0001999838714364388,
148
+ "loss": 0.0885,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.03,
153
+ "learning_rate": 0.00019998107142693786,
154
+ "loss": 0.0734,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.03,
159
+ "learning_rate": 0.00019997804744603225,
160
+ "loss": 0.0817,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.04,
165
+ "learning_rate": 0.00019997479950049622,
166
+ "loss": 0.0609,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.04,
171
+ "learning_rate": 0.00019997132759760558,
172
+ "loss": 0.0923,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.04,
177
+ "learning_rate": 0.00019996763174513787,
178
+ "loss": 0.1019,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.04,
183
+ "learning_rate": 0.00019996371195137226,
184
+ "loss": 0.0931,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "learning_rate": 0.0001999595682250897,
190
+ "loss": 0.073,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.04,
195
+ "learning_rate": 0.00019995520057557262,
196
+ "loss": 0.0877,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.04,
201
+ "learning_rate": 0.00019995060901260527,
202
+ "loss": 0.0846,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.05,
207
+ "learning_rate": 0.0001999457935464733,
208
+ "loss": 0.0853,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.05,
213
+ "learning_rate": 0.0001999407541879641,
214
+ "loss": 0.0783,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.05,
219
+ "learning_rate": 0.00019993549094836642,
220
+ "loss": 0.0503,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.05,
225
+ "learning_rate": 0.00019993000383947073,
226
+ "loss": 0.1231,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "learning_rate": 0.0001999242928735689,
232
+ "loss": 0.0707,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.05,
237
+ "learning_rate": 0.00019991835806345423,
238
+ "loss": 0.0699,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.05,
243
+ "learning_rate": 0.00019991219942242156,
244
+ "loss": 0.0747,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.06,
249
+ "learning_rate": 0.0001999058169642671,
250
+ "loss": 0.0722,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.06,
255
+ "learning_rate": 0.00019989921070328844,
256
+ "loss": 0.0895,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.06,
261
+ "eval_loss": 0.07923433184623718,
262
+ "eval_runtime": 23.2627,
263
+ "eval_samples_per_second": 42.987,
264
+ "eval_steps_per_second": 10.747,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.06,
269
+ "learning_rate": 0.00019989238065428445,
270
+ "loss": 0.0726,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.06,
275
+ "learning_rate": 0.00019988532683255547,
276
+ "loss": 0.0697,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.06,
281
+ "learning_rate": 0.000199878049253903,
282
+ "loss": 0.0525,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.06,
287
+ "learning_rate": 0.0001998705479346298,
288
+ "loss": 0.101,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.06,
293
+ "learning_rate": 0.0001998628228915399,
294
+ "loss": 0.0805,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.07,
299
+ "learning_rate": 0.00019985487414193845,
300
+ "loss": 0.055,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.07,
305
+ "learning_rate": 0.00019984670170363172,
306
+ "loss": 0.0556,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.07,
311
+ "learning_rate": 0.0001998383055949271,
312
+ "loss": 0.0735,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.07,
317
+ "learning_rate": 0.0001998296858346331,
318
+ "loss": 0.0539,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.07,
323
+ "learning_rate": 0.00019982084244205909,
324
+ "loss": 0.0525,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.07,
329
+ "learning_rate": 0.00019981177543701556,
330
+ "loss": 0.0426,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.07,
335
+ "learning_rate": 0.00019980248483981376,
336
+ "loss": 0.0343,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.08,
341
+ "learning_rate": 0.000199792970671266,
342
+ "loss": 0.0268,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.08,
347
+ "learning_rate": 0.00019978323295268533,
348
+ "loss": 0.0287,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.08,
353
+ "learning_rate": 0.0001997732717058855,
354
+ "loss": 0.024,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.08,
359
+ "learning_rate": 0.0001997630869531812,
360
+ "loss": 0.0164,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.08,
365
+ "learning_rate": 0.00019975267871738756,
366
+ "loss": 0.0272,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.08,
371
+ "learning_rate": 0.00019974204702182056,
372
+ "loss": 0.0233,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.08,
377
+ "learning_rate": 0.0001997311918902966,
378
+ "loss": 0.0211,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.09,
383
+ "learning_rate": 0.0001997201133471327,
384
+ "loss": 0.015,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.09,
389
+ "eval_loss": 0.040460266172885895,
390
+ "eval_runtime": 23.2455,
391
+ "eval_samples_per_second": 43.019,
392
+ "eval_steps_per_second": 10.755,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.09,
397
+ "learning_rate": 0.00019970881141714636,
398
+ "loss": 0.0275,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.09,
403
+ "learning_rate": 0.0001996972861256554,
404
+ "loss": 0.0264,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.09,
409
+ "learning_rate": 0.00019968553749847808,
410
+ "loss": 0.0314,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.09,
415
+ "learning_rate": 0.000199673565561933,
416
+ "loss": 0.033,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.09,
421
+ "learning_rate": 0.0001996613703428389,
422
+ "loss": 0.0379,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.09,
427
+ "learning_rate": 0.00019964895186851475,
428
+ "loss": 0.0156,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.1,
433
+ "learning_rate": 0.00019963631016677968,
434
+ "loss": 0.0147,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.1,
439
+ "learning_rate": 0.00019962344526595283,
440
+ "loss": 0.0255,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.1,
445
+ "learning_rate": 0.00019961035719485336,
446
+ "loss": 0.0269,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.1,
451
+ "learning_rate": 0.00019959704598280034,
452
+ "loss": 0.0273,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.1,
457
+ "learning_rate": 0.00019958351165961274,
458
+ "loss": 0.0342,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.1,
463
+ "learning_rate": 0.0001995697542556093,
464
+ "loss": 0.0194,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.1,
469
+ "learning_rate": 0.00019955577380160853,
470
+ "loss": 0.0256,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.11,
475
+ "learning_rate": 0.00019954157032892855,
476
+ "loss": 0.0126,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.11,
481
+ "learning_rate": 0.0001995271438693871,
482
+ "loss": 0.0141,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.11,
487
+ "learning_rate": 0.00019951249445530146,
488
+ "loss": 0.0283,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.11,
493
+ "learning_rate": 0.00019949762211948833,
494
+ "loss": 0.0486,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.11,
499
+ "learning_rate": 0.00019948252689526381,
500
+ "loss": 0.0211,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.11,
505
+ "learning_rate": 0.00019946720881644324,
506
+ "loss": 0.0336,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.11,
511
+ "learning_rate": 0.00019945166791734132,
512
+ "loss": 0.0376,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.11,
517
+ "eval_loss": 0.035690754652023315,
518
+ "eval_runtime": 23.2365,
519
+ "eval_samples_per_second": 43.036,
520
+ "eval_steps_per_second": 10.759,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.12,
525
+ "learning_rate": 0.0001994359042327717,
526
+ "loss": 0.0414,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.12,
531
+ "learning_rate": 0.00019941991779804727,
532
+ "loss": 0.0199,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.12,
537
+ "learning_rate": 0.00019940370864897987,
538
+ "loss": 0.0214,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.12,
543
+ "learning_rate": 0.0001993872768218802,
544
+ "loss": 0.0112,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.12,
549
+ "learning_rate": 0.0001993706223535578,
550
+ "loss": 0.0512,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.12,
555
+ "learning_rate": 0.00019935374528132105,
556
+ "loss": 0.0236,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.12,
561
+ "learning_rate": 0.00019933664564297687,
562
+ "loss": 0.0254,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.13,
567
+ "learning_rate": 0.0001993193234768308,
568
+ "loss": 0.0257,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.13,
573
+ "learning_rate": 0.00019930177882168692,
574
+ "loss": 0.0311,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.13,
579
+ "learning_rate": 0.00019928401171684766,
580
+ "loss": 0.0294,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.13,
585
+ "learning_rate": 0.0001992660222021138,
586
+ "loss": 0.0207,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.13,
591
+ "learning_rate": 0.0001992478103177843,
592
+ "loss": 0.0151,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.13,
597
+ "learning_rate": 0.00019922937610465638,
598
+ "loss": 0.0315,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.13,
603
+ "learning_rate": 0.00019921071960402512,
604
+ "loss": 0.0228,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.14,
609
+ "learning_rate": 0.0001991918408576837,
610
+ "loss": 0.0126,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.14,
615
+ "learning_rate": 0.00019917273990792316,
616
+ "loss": 0.0126,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.14,
621
+ "learning_rate": 0.00019915341679753218,
622
+ "loss": 0.0282,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.14,
627
+ "learning_rate": 0.00019913387156979728,
628
+ "loss": 0.0155,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.14,
633
+ "learning_rate": 0.00019911410426850243,
634
+ "loss": 0.0218,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.14,
639
+ "learning_rate": 0.0001990941149379291,
640
+ "loss": 0.0196,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.14,
645
+ "eval_loss": 0.03417763113975525,
646
+ "eval_runtime": 23.1746,
647
+ "eval_samples_per_second": 43.151,
648
+ "eval_steps_per_second": 10.788,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.14,
653
+ "learning_rate": 0.00019907390362285617,
654
+ "loss": 0.0175,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.15,
659
+ "learning_rate": 0.00019905347036855978,
660
+ "loss": 0.0185,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.15,
665
+ "learning_rate": 0.00019903281522081322,
666
+ "loss": 0.0159,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.15,
671
+ "learning_rate": 0.0001990119382258869,
672
+ "loss": 0.0164,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.15,
677
+ "learning_rate": 0.00019899083943054815,
678
+ "loss": 0.0224,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.15,
683
+ "learning_rate": 0.0001989695188820612,
684
+ "loss": 0.0211,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.15,
689
+ "learning_rate": 0.00019894797662818703,
690
+ "loss": 0.0525,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.15,
695
+ "learning_rate": 0.0001989262127171832,
696
+ "loss": 0.0146,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.16,
701
+ "learning_rate": 0.00019890422719780396,
702
+ "loss": 0.0181,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.16,
707
+ "learning_rate": 0.0001988820201192999,
708
+ "loss": 0.0141,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.16,
713
+ "learning_rate": 0.00019885959153141783,
714
+ "loss": 0.0185,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.16,
719
+ "learning_rate": 0.00019883694148440105,
720
+ "loss": 0.0297,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.16,
725
+ "learning_rate": 0.00019881407002898867,
726
+ "loss": 0.0169,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.16,
731
+ "learning_rate": 0.00019879097721641595,
732
+ "loss": 0.0241,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.16,
737
+ "learning_rate": 0.00019876766309841396,
738
+ "loss": 0.0136,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.17,
743
+ "learning_rate": 0.0001987441277272096,
744
+ "loss": 0.0223,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.17,
749
+ "learning_rate": 0.0001987203711555253,
750
+ "loss": 0.0186,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.17,
755
+ "learning_rate": 0.00019869639343657907,
756
+ "loss": 0.0145,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.17,
761
+ "learning_rate": 0.00019867219462408432,
762
+ "loss": 0.0164,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.17,
767
+ "learning_rate": 0.0001986477747722497,
768
+ "loss": 0.0219,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.17,
773
+ "eval_loss": 0.0333634614944458,
774
+ "eval_runtime": 23.4378,
775
+ "eval_samples_per_second": 42.666,
776
+ "eval_steps_per_second": 10.667,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.17,
781
+ "learning_rate": 0.0001986231339357791,
782
+ "loss": 0.0233,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.17,
787
+ "learning_rate": 0.00019859827216987136,
788
+ "loss": 0.0269,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.17,
793
+ "learning_rate": 0.00019857318953022028,
794
+ "loss": 0.0201,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.18,
799
+ "learning_rate": 0.00019854788607301445,
800
+ "loss": 0.0241,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.18,
805
+ "learning_rate": 0.00019852236185493707,
806
+ "loss": 0.0147,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.18,
811
+ "learning_rate": 0.00019849661693316595,
812
+ "loss": 0.0257,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.18,
817
+ "learning_rate": 0.00019847065136537325,
818
+ "loss": 0.0144,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.18,
823
+ "learning_rate": 0.00019844446520972544,
824
+ "loss": 0.0214,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.18,
829
+ "learning_rate": 0.00019841805852488308,
830
+ "loss": 0.0156,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.18,
835
+ "learning_rate": 0.00019839143137000088,
836
+ "loss": 0.0228,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.19,
841
+ "learning_rate": 0.00019836458380472724,
842
+ "loss": 0.0257,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.19,
847
+ "learning_rate": 0.00019833751588920452,
848
+ "loss": 0.022,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.19,
853
+ "learning_rate": 0.00019831022768406845,
854
+ "loss": 0.0202,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.19,
859
+ "learning_rate": 0.00019828271925044852,
860
+ "loss": 0.0118,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.19,
865
+ "learning_rate": 0.00019825499064996733,
866
+ "loss": 0.0279,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.19,
871
+ "learning_rate": 0.00019822704194474082,
872
+ "loss": 0.0207,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.19,
877
+ "learning_rate": 0.00019819887319737795,
878
+ "loss": 0.0272,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.2,
883
+ "learning_rate": 0.00019817048447098054,
884
+ "loss": 0.0112,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.2,
889
+ "learning_rate": 0.0001981418758291433,
890
+ "loss": 0.0255,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.2,
895
+ "learning_rate": 0.00019811304733595355,
896
+ "loss": 0.0188,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.2,
901
+ "eval_loss": 0.031686607748270035,
902
+ "eval_runtime": 23.3537,
903
+ "eval_samples_per_second": 42.82,
904
+ "eval_steps_per_second": 10.705,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.2,
909
+ "learning_rate": 0.00019808399905599111,
910
+ "loss": 0.0224,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.2,
915
+ "learning_rate": 0.00019805473105432805,
916
+ "loss": 0.0155,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.2,
921
+ "learning_rate": 0.00019802524339652885,
922
+ "loss": 0.0163,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.2,
927
+ "learning_rate": 0.00019799553614864985,
928
+ "loss": 0.0272,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.21,
933
+ "learning_rate": 0.00019796560937723946,
934
+ "loss": 0.0145,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.21,
939
+ "learning_rate": 0.0001979354631493377,
940
+ "loss": 0.0232,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.21,
945
+ "learning_rate": 0.00019790509753247633,
946
+ "loss": 0.0182,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.21,
951
+ "learning_rate": 0.00019787451259467852,
952
+ "loss": 0.0241,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.21,
957
+ "learning_rate": 0.00019784370840445875,
958
+ "loss": 0.0237,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.21,
963
+ "learning_rate": 0.00019781268503082263,
964
+ "loss": 0.0197,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.21,
969
+ "learning_rate": 0.00019778144254326683,
970
+ "loss": 0.009,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.22,
975
+ "learning_rate": 0.00019774998101177886,
976
+ "loss": 0.0216,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.22,
981
+ "learning_rate": 0.00019771830050683686,
982
+ "loss": 0.0155,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.22,
987
+ "learning_rate": 0.00019768640109940955,
988
+ "loss": 0.0226,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.22,
993
+ "learning_rate": 0.000197654282860956,
994
+ "loss": 0.0207,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.22,
999
+ "learning_rate": 0.00019762194586342546,
1000
+ "loss": 0.0229,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.22,
1005
+ "learning_rate": 0.00019758939017925736,
1006
+ "loss": 0.021,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.22,
1011
+ "learning_rate": 0.00019755661588138085,
1012
+ "loss": 0.0213,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.23,
1017
+ "learning_rate": 0.00019752362304321493,
1018
+ "loss": 0.0099,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.23,
1023
+ "learning_rate": 0.00019749041173866807,
1024
+ "loss": 0.0147,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.23,
1029
+ "eval_loss": 0.036477215588092804,
1030
+ "eval_runtime": 23.6345,
1031
+ "eval_samples_per_second": 42.311,
1032
+ "eval_steps_per_second": 10.578,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.23,
1037
+ "learning_rate": 0.00019745698204213822,
1038
+ "loss": 0.0183,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.23,
1043
+ "learning_rate": 0.00019742333402851246,
1044
+ "loss": 0.0124,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.23,
1049
+ "learning_rate": 0.00019738946777316706,
1050
+ "loss": 0.0066,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.23,
1055
+ "learning_rate": 0.00019735538335196706,
1056
+ "loss": 0.0175,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.23,
1061
+ "learning_rate": 0.00019732108084126625,
1062
+ "loss": 0.0215,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.24,
1067
+ "learning_rate": 0.00019728656031790706,
1068
+ "loss": 0.026,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.24,
1073
+ "learning_rate": 0.00019725182185922018,
1074
+ "loss": 0.0094,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.24,
1079
+ "learning_rate": 0.00019721686554302457,
1080
+ "loss": 0.0301,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.24,
1085
+ "learning_rate": 0.00019718169144762718,
1086
+ "loss": 0.0131,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.24,
1091
+ "learning_rate": 0.00019714629965182282,
1092
+ "loss": 0.0206,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.24,
1097
+ "learning_rate": 0.00019711069023489408,
1098
+ "loss": 0.0147,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.24,
1103
+ "learning_rate": 0.00019707486327661094,
1104
+ "loss": 0.0219,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.25,
1109
+ "learning_rate": 0.0001970388188572307,
1110
+ "loss": 0.0253,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.25,
1115
+ "learning_rate": 0.00019700255705749786,
1116
+ "loss": 0.0188,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.25,
1121
+ "learning_rate": 0.00019696607795864382,
1122
+ "loss": 0.0149,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.25,
1127
+ "learning_rate": 0.0001969293816423869,
1128
+ "loss": 0.0211,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.25,
1133
+ "learning_rate": 0.0001968924681909318,
1134
+ "loss": 0.015,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.25,
1139
+ "learning_rate": 0.00019685533768696982,
1140
+ "loss": 0.0201,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.25,
1145
+ "learning_rate": 0.00019681799021367837,
1146
+ "loss": 0.0253,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.26,
1151
+ "learning_rate": 0.00019678042585472098,
1152
+ "loss": 0.0224,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.26,
1157
+ "eval_loss": 0.0387922078371048,
1158
+ "eval_runtime": 23.0013,
1159
+ "eval_samples_per_second": 43.476,
1160
+ "eval_steps_per_second": 10.869,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.26,
1165
+ "learning_rate": 0.00019674264469424698,
1166
+ "loss": 0.0069,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.26,
1171
+ "learning_rate": 0.00019670464681689144,
1172
+ "loss": 0.0082,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.26,
1177
+ "learning_rate": 0.00019666643230777475,
1178
+ "loss": 0.0199,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.26,
1183
+ "learning_rate": 0.00019662800125250276,
1184
+ "loss": 0.0101,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.26,
1189
+ "learning_rate": 0.00019658935373716632,
1190
+ "loss": 0.0157,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.26,
1195
+ "learning_rate": 0.00019655048984834118,
1196
+ "loss": 0.0268,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.27,
1201
+ "learning_rate": 0.0001965114096730879,
1202
+ "loss": 0.0135,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.27,
1207
+ "learning_rate": 0.00019647211329895136,
1208
+ "loss": 0.0144,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.27,
1213
+ "learning_rate": 0.00019643260081396094,
1214
+ "loss": 0.0116,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.27,
1219
+ "learning_rate": 0.00019639287230663004,
1220
+ "loss": 0.0191,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.27,
1225
+ "learning_rate": 0.00019635292786595598,
1226
+ "loss": 0.0216,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.27,
1231
+ "learning_rate": 0.00019631276758141987,
1232
+ "loss": 0.0114,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.27,
1237
+ "learning_rate": 0.00019627239154298623,
1238
+ "loss": 0.0367,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.28,
1243
+ "learning_rate": 0.00019623179984110296,
1244
+ "loss": 0.0071,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.28,
1249
+ "learning_rate": 0.00019619099256670114,
1250
+ "loss": 0.0171,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.28,
1255
+ "learning_rate": 0.00019614996981119468,
1256
+ "loss": 0.0124,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.28,
1261
+ "learning_rate": 0.0001961087316664802,
1262
+ "loss": 0.024,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.28,
1267
+ "learning_rate": 0.00019606727822493687,
1268
+ "loss": 0.0121,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.28,
1273
+ "learning_rate": 0.00019602560957942606,
1274
+ "loss": 0.0079,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.28,
1279
+ "learning_rate": 0.00019598372582329133,
1280
+ "loss": 0.0116,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.28,
1285
+ "eval_loss": 0.05043657124042511,
1286
+ "eval_runtime": 23.2026,
1287
+ "eval_samples_per_second": 43.099,
1288
+ "eval_steps_per_second": 10.775,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.29,
1293
+ "learning_rate": 0.00019594162705035808,
1294
+ "loss": 0.0163,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.29,
1299
+ "learning_rate": 0.00019589931335493334,
1300
+ "loss": 0.0158,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.29,
1305
+ "learning_rate": 0.0001958567848318057,
1306
+ "loss": 0.0055,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.29,
1311
+ "learning_rate": 0.00019581404157624483,
1312
+ "loss": 0.011,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.29,
1317
+ "learning_rate": 0.00019577108368400162,
1318
+ "loss": 0.0075,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.29,
1323
+ "learning_rate": 0.0001957279112513076,
1324
+ "loss": 0.0219,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.29,
1329
+ "learning_rate": 0.00019568452437487504,
1330
+ "loss": 0.0054,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.3,
1335
+ "learning_rate": 0.00019564092315189647,
1336
+ "loss": 0.0111,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.3,
1341
+ "learning_rate": 0.00019559710768004472,
1342
+ "loss": 0.0115,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.3,
1347
+ "learning_rate": 0.00019555307805747246,
1348
+ "loss": 0.0114,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.3,
1353
+ "learning_rate": 0.0001955088343828121,
1354
+ "loss": 0.0055,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.3,
1359
+ "learning_rate": 0.00019546437675517563,
1360
+ "loss": 0.0084,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.3,
1365
+ "learning_rate": 0.00019541970527415424,
1366
+ "loss": 0.0189,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.3,
1371
+ "learning_rate": 0.00019537482003981825,
1372
+ "loss": 0.0172,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.31,
1377
+ "learning_rate": 0.00019532972115271675,
1378
+ "loss": 0.0054,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.31,
1383
+ "learning_rate": 0.00019528440871387746,
1384
+ "loss": 0.0149,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.31,
1389
+ "learning_rate": 0.00019523888282480656,
1390
+ "loss": 0.0264,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.31,
1395
+ "learning_rate": 0.00019519314358748825,
1396
+ "loss": 0.0094,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.31,
1401
+ "learning_rate": 0.00019514719110438482,
1402
+ "loss": 0.0221,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.31,
1407
+ "learning_rate": 0.0001951010254784361,
1408
+ "loss": 0.0158,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.31,
1413
+ "eval_loss": 0.06923255324363708,
1414
+ "eval_runtime": 23.5744,
1415
+ "eval_samples_per_second": 42.419,
1416
+ "eval_steps_per_second": 10.605,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.31,
1421
+ "learning_rate": 0.00019505464681305953,
1422
+ "loss": 0.0207,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.32,
1427
+ "learning_rate": 0.0001950080552121497,
1428
+ "loss": 0.0301,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.32,
1433
+ "learning_rate": 0.00019496125078007816,
1434
+ "loss": 0.021,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.32,
1439
+ "learning_rate": 0.0001949142336216934,
1440
+ "loss": 0.0166,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.32,
1445
+ "learning_rate": 0.00019486700384232033,
1446
+ "loss": 0.0037,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.32,
1451
+ "learning_rate": 0.00019481956154776016,
1452
+ "loss": 0.0083,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.32,
1457
+ "learning_rate": 0.00019477190684429014,
1458
+ "loss": 0.0085,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.32,
1463
+ "learning_rate": 0.00019472403983866344,
1464
+ "loss": 0.0103,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.33,
1469
+ "learning_rate": 0.00019467596063810872,
1470
+ "loss": 0.0169,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.33,
1475
+ "learning_rate": 0.0001946276693503301,
1476
+ "loss": 0.008,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.33,
1481
+ "learning_rate": 0.00019457916608350666,
1482
+ "loss": 0.0243,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.33,
1487
+ "learning_rate": 0.00019453045094629246,
1488
+ "loss": 0.0211,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.33,
1493
+ "learning_rate": 0.00019448152404781608,
1494
+ "loss": 0.0148,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.33,
1499
+ "learning_rate": 0.00019443238549768057,
1500
+ "loss": 0.0178,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.33,
1505
+ "learning_rate": 0.00019438303540596309,
1506
+ "loss": 0.0132,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.34,
1511
+ "learning_rate": 0.00019433347388321458,
1512
+ "loss": 0.0207,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.34,
1517
+ "learning_rate": 0.00019428370104045977,
1518
+ "loss": 0.0058,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.34,
1523
+ "learning_rate": 0.00019423371698919665,
1524
+ "loss": 0.0182,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.34,
1529
+ "learning_rate": 0.0001941835218413964,
1530
+ "loss": 0.0164,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.34,
1535
+ "learning_rate": 0.00019413311570950316,
1536
+ "loss": 0.0193,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.34,
1541
+ "eval_loss": 0.04074312746524811,
1542
+ "eval_runtime": 23.6367,
1543
+ "eval_samples_per_second": 42.307,
1544
+ "eval_steps_per_second": 10.577,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.34,
1549
+ "learning_rate": 0.00019408249870643353,
1550
+ "loss": 0.0135,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.34,
1555
+ "learning_rate": 0.0001940316709455766,
1556
+ "loss": 0.0185,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.35,
1561
+ "learning_rate": 0.00019398063254079362,
1562
+ "loss": 0.0125,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.35,
1567
+ "learning_rate": 0.00019392938360641765,
1568
+ "loss": 0.0099,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.35,
1573
+ "learning_rate": 0.00019387792425725332,
1574
+ "loss": 0.0124,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.35,
1579
+ "learning_rate": 0.00019382625460857676,
1580
+ "loss": 0.0116,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.35,
1585
+ "learning_rate": 0.00019377437477613506,
1586
+ "loss": 0.0067,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.35,
1591
+ "learning_rate": 0.00019372228487614623,
1592
+ "loss": 0.0135,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.35,
1597
+ "learning_rate": 0.00019366998502529884,
1598
+ "loss": 0.0096,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.36,
1603
+ "learning_rate": 0.00019361747534075177,
1604
+ "loss": 0.0258,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.36,
1609
+ "learning_rate": 0.00019356475594013397,
1610
+ "loss": 0.0061,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.36,
1615
+ "learning_rate": 0.00019351182694154418,
1616
+ "loss": 0.0065,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.36,
1621
+ "learning_rate": 0.00019345868846355063,
1622
+ "loss": 0.0167,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.36,
1627
+ "learning_rate": 0.00019340534062519088,
1628
+ "loss": 0.009,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.36,
1633
+ "learning_rate": 0.00019335178354597146,
1634
+ "loss": 0.0079,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.36,
1639
+ "learning_rate": 0.0001932980173458676,
1640
+ "loss": 0.028,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.37,
1645
+ "learning_rate": 0.00019324404214532303,
1646
+ "loss": 0.0204,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.37,
1651
+ "learning_rate": 0.00019318985806524966,
1652
+ "loss": 0.0174,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.37,
1657
+ "learning_rate": 0.00019313546522702727,
1658
+ "loss": 0.017,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.37,
1663
+ "learning_rate": 0.00019308086375250335,
1664
+ "loss": 0.0181,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.37,
1669
+ "eval_loss": 0.044319622218608856,
1670
+ "eval_runtime": 23.1398,
1671
+ "eval_samples_per_second": 43.216,
1672
+ "eval_steps_per_second": 10.804,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.37,
1677
+ "learning_rate": 0.00019302605376399277,
1678
+ "loss": 0.0072,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.37,
1683
+ "learning_rate": 0.00019297103538427744,
1684
+ "loss": 0.0227,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.37,
1689
+ "learning_rate": 0.00019291580873660613,
1690
+ "loss": 0.0113,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.38,
1695
+ "learning_rate": 0.00019286037394469413,
1696
+ "loss": 0.0084,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.38,
1701
+ "learning_rate": 0.0001928047311327231,
1702
+ "loss": 0.0131,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.38,
1707
+ "learning_rate": 0.00019274888042534056,
1708
+ "loss": 0.0124,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.38,
1713
+ "learning_rate": 0.00019269282194765984,
1714
+ "loss": 0.011,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.38,
1719
+ "learning_rate": 0.00019263655582525964,
1720
+ "loss": 0.0062,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.38,
1725
+ "learning_rate": 0.00019258008218418383,
1726
+ "loss": 0.012,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.38,
1731
+ "learning_rate": 0.00019252340115094124,
1732
+ "loss": 0.011,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.39,
1737
+ "learning_rate": 0.00019246651285250514,
1738
+ "loss": 0.0039,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.39,
1743
+ "learning_rate": 0.00019240941741631323,
1744
+ "loss": 0.0261,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.39,
1749
+ "learning_rate": 0.00019235211497026708,
1750
+ "loss": 0.0098,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.39,
1755
+ "learning_rate": 0.00019229460564273217,
1756
+ "loss": 0.023,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.39,
1761
+ "learning_rate": 0.00019223688956253727,
1762
+ "loss": 0.0198,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.39,
1767
+ "learning_rate": 0.00019217896685897444,
1768
+ "loss": 0.0037,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.39,
1773
+ "learning_rate": 0.00019212083766179846,
1774
+ "loss": 0.0067,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.4,
1779
+ "learning_rate": 0.00019206250210122684,
1780
+ "loss": 0.0131,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.4,
1785
+ "learning_rate": 0.00019200396030793918,
1786
+ "loss": 0.0087,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.4,
1791
+ "learning_rate": 0.00019194521241307726,
1792
+ "loss": 0.0124,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.4,
1797
+ "eval_loss": 0.048221979290246964,
1798
+ "eval_runtime": 23.4398,
1799
+ "eval_samples_per_second": 42.663,
1800
+ "eval_steps_per_second": 10.666,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.4,
1805
+ "learning_rate": 0.00019188625854824447,
1806
+ "loss": 0.009,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.4,
1811
+ "learning_rate": 0.00019182709884550558,
1812
+ "loss": 0.0134,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.4,
1817
+ "learning_rate": 0.00019176773343738653,
1818
+ "loss": 0.012,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.4,
1823
+ "learning_rate": 0.000191708162456874,
1824
+ "loss": 0.0084,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.41,
1829
+ "learning_rate": 0.0001916483860374152,
1830
+ "loss": 0.008,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.41,
1835
+ "learning_rate": 0.00019158840431291761,
1836
+ "loss": 0.0069,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.41,
1841
+ "learning_rate": 0.0001915282174177485,
1842
+ "loss": 0.0065,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.41,
1847
+ "learning_rate": 0.0001914678254867349,
1848
+ "loss": 0.0161,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.41,
1853
+ "learning_rate": 0.00019140722865516305,
1854
+ "loss": 0.0156,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.41,
1859
+ "learning_rate": 0.0001913464270587782,
1860
+ "loss": 0.0127,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.41,
1865
+ "learning_rate": 0.00019128542083378435,
1866
+ "loss": 0.003,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.42,
1871
+ "learning_rate": 0.00019122421011684386,
1872
+ "loss": 0.0114,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.42,
1877
+ "learning_rate": 0.00019116279504507717,
1878
+ "loss": 0.0057,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.42,
1883
+ "learning_rate": 0.00019110117575606253,
1884
+ "loss": 0.0053,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.42,
1889
+ "learning_rate": 0.00019103935238783563,
1890
+ "loss": 0.0077,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.42,
1895
+ "learning_rate": 0.00019097732507888942,
1896
+ "loss": 0.0173,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.42,
1901
+ "learning_rate": 0.00019091509396817357,
1902
+ "loss": 0.0117,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.42,
1907
+ "learning_rate": 0.0001908526591950944,
1908
+ "loss": 0.0152,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.43,
1913
+ "learning_rate": 0.0001907900208995144,
1914
+ "loss": 0.0162,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.43,
1919
+ "learning_rate": 0.00019072717922175201,
1920
+ "loss": 0.0094,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.43,
1925
+ "eval_loss": 0.054927486926317215,
1926
+ "eval_runtime": 23.3503,
1927
+ "eval_samples_per_second": 42.826,
1928
+ "eval_steps_per_second": 10.707,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.43,
1933
+ "learning_rate": 0.00019066413430258127,
1934
+ "loss": 0.0107,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.43,
1939
+ "learning_rate": 0.00019060088628323145,
1940
+ "loss": 0.0178,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.43,
1945
+ "learning_rate": 0.00019053743530538693,
1946
+ "loss": 0.0031,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.43,
1951
+ "learning_rate": 0.00019047378151118663,
1952
+ "loss": 0.0072,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.43,
1957
+ "learning_rate": 0.00019040992504322382,
1958
+ "loss": 0.0185,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.44,
1963
+ "learning_rate": 0.0001903458660445458,
1964
+ "loss": 0.0125,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.44,
1969
+ "learning_rate": 0.00019028160465865362,
1970
+ "loss": 0.0047,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.44,
1975
+ "learning_rate": 0.0001902171410295016,
1976
+ "loss": 0.0325,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.44,
1981
+ "learning_rate": 0.0001901524753014972,
1982
+ "loss": 0.011,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.44,
1987
+ "learning_rate": 0.00019008760761950058,
1988
+ "loss": 0.003,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.44,
1993
+ "learning_rate": 0.00019002253812882427,
1994
+ "loss": 0.0067,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.44,
1999
+ "learning_rate": 0.00018995726697523297,
2000
+ "loss": 0.0092,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.45,
2005
+ "learning_rate": 0.00018989179430494303,
2006
+ "loss": 0.0224,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.45,
2011
+ "learning_rate": 0.0001898261202646223,
2012
+ "loss": 0.0255,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.45,
2017
+ "learning_rate": 0.0001897602450013897,
2018
+ "loss": 0.0097,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.45,
2023
+ "learning_rate": 0.00018969416866281485,
2024
+ "loss": 0.0074,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.45,
2029
+ "learning_rate": 0.000189627891396918,
2030
+ "loss": 0.0121,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.45,
2035
+ "learning_rate": 0.00018956141335216926,
2036
+ "loss": 0.0123,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.45,
2041
+ "learning_rate": 0.00018949473467748867,
2042
+ "loss": 0.0042,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.46,
2047
+ "learning_rate": 0.00018942785552224564,
2048
+ "loss": 0.0081,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.46,
2053
+ "eval_loss": 0.03408419340848923,
2054
+ "eval_runtime": 23.1715,
2055
+ "eval_samples_per_second": 43.156,
2056
+ "eval_steps_per_second": 10.789,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.46,
2061
+ "learning_rate": 0.0001893607760362588,
2062
+ "loss": 0.0142,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.46,
2067
+ "learning_rate": 0.00018929349636979536,
2068
+ "loss": 0.0097,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.46,
2073
+ "learning_rate": 0.0001892260166735711,
2074
+ "loss": 0.0164,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.46,
2079
+ "learning_rate": 0.00018915833709874988,
2080
+ "loss": 0.0148,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.46,
2085
+ "learning_rate": 0.00018909045779694325,
2086
+ "loss": 0.0212,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.46,
2091
+ "learning_rate": 0.00018902237892021024,
2092
+ "loss": 0.0203,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.47,
2097
+ "learning_rate": 0.00018895410062105694,
2098
+ "loss": 0.0116,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.47,
2103
+ "learning_rate": 0.00018888562305243616,
2104
+ "loss": 0.0169,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.47,
2109
+ "learning_rate": 0.00018881694636774712,
2110
+ "loss": 0.0192,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.47,
2115
+ "learning_rate": 0.00018874807072083503,
2116
+ "loss": 0.0079,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.47,
2121
+ "learning_rate": 0.00018867899626599094,
2122
+ "loss": 0.0138,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.47,
2127
+ "learning_rate": 0.00018860972315795107,
2128
+ "loss": 0.0148,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 0.47,
2133
+ "learning_rate": 0.0001885402515518968,
2134
+ "loss": 0.0146,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 0.48,
2139
+ "learning_rate": 0.0001884705816034541,
2140
+ "loss": 0.0094,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 0.48,
2145
+ "learning_rate": 0.00018840071346869328,
2146
+ "loss": 0.023,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 0.48,
2151
+ "learning_rate": 0.0001883306473041286,
2152
+ "loss": 0.0092,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 0.48,
2157
+ "learning_rate": 0.00018826038326671797,
2158
+ "loss": 0.0192,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 0.48,
2163
+ "learning_rate": 0.0001881899215138625,
2164
+ "loss": 0.0116,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 0.48,
2169
+ "learning_rate": 0.00018811926220340628,
2170
+ "loss": 0.0245,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 0.48,
2175
+ "learning_rate": 0.0001880484054936359,
2176
+ "loss": 0.0188,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 0.48,
2181
+ "eval_loss": 0.0401308573782444,
2182
+ "eval_runtime": 23.3351,
2183
+ "eval_samples_per_second": 42.854,
2184
+ "eval_steps_per_second": 10.713,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 0.49,
2189
+ "learning_rate": 0.00018797735154328014,
2190
+ "loss": 0.0094,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 0.49,
2195
+ "learning_rate": 0.00018790610051150973,
2196
+ "loss": 0.0048,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 0.49,
2201
+ "learning_rate": 0.0001878346525579368,
2202
+ "loss": 0.0168,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 0.49,
2207
+ "learning_rate": 0.0001877630078426146,
2208
+ "loss": 0.0134,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 0.49,
2213
+ "learning_rate": 0.0001876911665260372,
2214
+ "loss": 0.0209,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 0.49,
2219
+ "learning_rate": 0.00018761912876913908,
2220
+ "loss": 0.0158,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 0.49,
2225
+ "learning_rate": 0.00018754689473329475,
2226
+ "loss": 0.0085,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 0.5,
2231
+ "learning_rate": 0.00018747446458031842,
2232
+ "loss": 0.0014,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 0.5,
2237
+ "learning_rate": 0.00018740183847246362,
2238
+ "loss": 0.0198,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 0.5,
2243
+ "learning_rate": 0.00018732901657242287,
2244
+ "loss": 0.0301,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 0.5,
2249
+ "learning_rate": 0.0001872559990433273,
2250
+ "loss": 0.0069,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 0.5,
2255
+ "learning_rate": 0.0001871827860487463,
2256
+ "loss": 0.0082,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 0.5,
2261
+ "learning_rate": 0.00018710937775268696,
2262
+ "loss": 0.0092,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 0.5,
2267
+ "learning_rate": 0.0001870357743195941,
2268
+ "loss": 0.0065,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 0.5,
2273
+ "learning_rate": 0.00018696197591434955,
2274
+ "loss": 0.015,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 0.51,
2279
+ "learning_rate": 0.00018688798270227188,
2280
+ "loss": 0.013,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 0.51,
2285
+ "learning_rate": 0.00018681379484911616,
2286
+ "loss": 0.0238,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 0.51,
2291
+ "learning_rate": 0.00018673941252107343,
2292
+ "loss": 0.0123,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 0.51,
2297
+ "learning_rate": 0.00018666483588477032,
2298
+ "loss": 0.0067,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 0.51,
2303
+ "learning_rate": 0.00018659006510726887,
2304
+ "loss": 0.021,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 0.51,
2309
+ "eval_loss": 0.050777580589056015,
2310
+ "eval_runtime": 23.3931,
2311
+ "eval_samples_per_second": 42.748,
2312
+ "eval_steps_per_second": 10.687,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 0.51,
2317
+ "learning_rate": 0.00018651510035606585,
2318
+ "loss": 0.0186,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 0.51,
2323
+ "learning_rate": 0.00018643994179909276,
2324
+ "loss": 0.0159,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 0.52,
2329
+ "learning_rate": 0.00018636458960471505,
2330
+ "loss": 0.0146,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 0.52,
2335
+ "learning_rate": 0.00018628904394173205,
2336
+ "loss": 0.0193,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 0.52,
2341
+ "learning_rate": 0.0001862133049793765,
2342
+ "loss": 0.0156,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 0.52,
2347
+ "learning_rate": 0.0001861373728873142,
2348
+ "loss": 0.0079,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 0.52,
2353
+ "learning_rate": 0.00018606124783564337,
2354
+ "loss": 0.0092,
2355
+ "step": 367
2356
+ },
2357
+ {
2358
+ "epoch": 0.52,
2359
+ "learning_rate": 0.0001859849299948948,
2360
+ "loss": 0.0141,
2361
+ "step": 368
2362
+ },
2363
+ {
2364
+ "epoch": 0.52,
2365
+ "learning_rate": 0.00018590841953603087,
2366
+ "loss": 0.0108,
2367
+ "step": 369
2368
+ },
2369
+ {
2370
+ "epoch": 0.53,
2371
+ "learning_rate": 0.00018583171663044565,
2372
+ "loss": 0.0352,
2373
+ "step": 370
2374
+ },
2375
+ {
2376
+ "epoch": 0.53,
2377
+ "learning_rate": 0.00018575482144996417,
2378
+ "loss": 0.013,
2379
+ "step": 371
2380
+ },
2381
+ {
2382
+ "epoch": 0.53,
2383
+ "learning_rate": 0.0001856777341668423,
2384
+ "loss": 0.0087,
2385
+ "step": 372
2386
+ },
2387
+ {
2388
+ "epoch": 0.53,
2389
+ "learning_rate": 0.00018560045495376616,
2390
+ "loss": 0.0135,
2391
+ "step": 373
2392
+ },
2393
+ {
2394
+ "epoch": 0.53,
2395
+ "learning_rate": 0.0001855229839838519,
2396
+ "loss": 0.0073,
2397
+ "step": 374
2398
+ },
2399
+ {
2400
+ "epoch": 0.53,
2401
+ "learning_rate": 0.00018544532143064516,
2402
+ "loss": 0.0135,
2403
+ "step": 375
2404
+ },
2405
+ {
2406
+ "epoch": 0.53,
2407
+ "learning_rate": 0.0001853674674681208,
2408
+ "loss": 0.0109,
2409
+ "step": 376
2410
+ },
2411
+ {
2412
+ "epoch": 0.54,
2413
+ "learning_rate": 0.00018528942227068247,
2414
+ "loss": 0.0123,
2415
+ "step": 377
2416
+ },
2417
+ {
2418
+ "epoch": 0.54,
2419
+ "learning_rate": 0.0001852111860131621,
2420
+ "loss": 0.0101,
2421
+ "step": 378
2422
+ },
2423
+ {
2424
+ "epoch": 0.54,
2425
+ "learning_rate": 0.00018513275887081977,
2426
+ "loss": 0.0153,
2427
+ "step": 379
2428
+ },
2429
+ {
2430
+ "epoch": 0.54,
2431
+ "learning_rate": 0.00018505414101934316,
2432
+ "loss": 0.0125,
2433
+ "step": 380
2434
+ },
2435
+ {
2436
+ "epoch": 0.54,
2437
+ "eval_loss": 0.040892839431762695,
2438
+ "eval_runtime": 23.0536,
2439
+ "eval_samples_per_second": 43.377,
2440
+ "eval_steps_per_second": 10.844,
2441
+ "step": 380
2442
+ },
2443
+ {
2444
+ "epoch": 0.54,
2445
+ "learning_rate": 0.00018497533263484698,
2446
+ "loss": 0.007,
2447
+ "step": 381
2448
+ },
2449
+ {
2450
+ "epoch": 0.54,
2451
+ "learning_rate": 0.00018489633389387299,
2452
+ "loss": 0.0122,
2453
+ "step": 382
2454
+ },
2455
+ {
2456
+ "epoch": 0.54,
2457
+ "learning_rate": 0.00018481714497338927,
2458
+ "loss": 0.0091,
2459
+ "step": 383
2460
+ },
2461
+ {
2462
+ "epoch": 0.55,
2463
+ "learning_rate": 0.00018473776605078992,
2464
+ "loss": 0.0086,
2465
+ "step": 384
2466
+ },
2467
+ {
2468
+ "epoch": 0.55,
2469
+ "learning_rate": 0.0001846581973038947,
2470
+ "loss": 0.0134,
2471
+ "step": 385
2472
+ },
2473
+ {
2474
+ "epoch": 0.55,
2475
+ "learning_rate": 0.00018457843891094851,
2476
+ "loss": 0.0088,
2477
+ "step": 386
2478
+ },
2479
+ {
2480
+ "epoch": 0.55,
2481
+ "learning_rate": 0.0001844984910506213,
2482
+ "loss": 0.005,
2483
+ "step": 387
2484
+ },
2485
+ {
2486
+ "epoch": 0.55,
2487
+ "learning_rate": 0.00018441835390200722,
2488
+ "loss": 0.0081,
2489
+ "step": 388
2490
+ },
2491
+ {
2492
+ "epoch": 0.55,
2493
+ "learning_rate": 0.00018433802764462455,
2494
+ "loss": 0.0123,
2495
+ "step": 389
2496
+ },
2497
+ {
2498
+ "epoch": 0.55,
2499
+ "learning_rate": 0.00018425751245841526,
2500
+ "loss": 0.0101,
2501
+ "step": 390
2502
+ },
2503
+ {
2504
+ "epoch": 0.56,
2505
+ "learning_rate": 0.00018417680852374438,
2506
+ "loss": 0.0148,
2507
+ "step": 391
2508
+ },
2509
+ {
2510
+ "epoch": 0.56,
2511
+ "learning_rate": 0.00018409591602139996,
2512
+ "loss": 0.0067,
2513
+ "step": 392
2514
+ },
2515
+ {
2516
+ "epoch": 0.56,
2517
+ "learning_rate": 0.00018401483513259237,
2518
+ "loss": 0.0145,
2519
+ "step": 393
2520
+ },
2521
+ {
2522
+ "epoch": 0.56,
2523
+ "learning_rate": 0.00018393356603895396,
2524
+ "loss": 0.0181,
2525
+ "step": 394
2526
+ },
2527
+ {
2528
+ "epoch": 0.56,
2529
+ "learning_rate": 0.00018385210892253871,
2530
+ "loss": 0.0094,
2531
+ "step": 395
2532
+ },
2533
+ {
2534
+ "epoch": 0.56,
2535
+ "learning_rate": 0.00018377046396582185,
2536
+ "loss": 0.0212,
2537
+ "step": 396
2538
+ },
2539
+ {
2540
+ "epoch": 0.56,
2541
+ "learning_rate": 0.00018368863135169932,
2542
+ "loss": 0.0062,
2543
+ "step": 397
2544
+ },
2545
+ {
2546
+ "epoch": 0.57,
2547
+ "learning_rate": 0.0001836066112634875,
2548
+ "loss": 0.0176,
2549
+ "step": 398
2550
+ },
2551
+ {
2552
+ "epoch": 0.57,
2553
+ "learning_rate": 0.0001835244038849227,
2554
+ "loss": 0.0144,
2555
+ "step": 399
2556
+ },
2557
+ {
2558
+ "epoch": 0.57,
2559
+ "learning_rate": 0.0001834420094001608,
2560
+ "loss": 0.0071,
2561
+ "step": 400
2562
+ },
2563
+ {
2564
+ "epoch": 0.57,
2565
+ "eval_loss": 0.04236825183033943,
2566
+ "eval_runtime": 23.1651,
2567
+ "eval_samples_per_second": 43.168,
2568
+ "eval_steps_per_second": 10.792,
2569
+ "step": 400
2570
+ },
2571
+ {
2572
+ "epoch": 0.57,
2573
+ "learning_rate": 0.00018335942799377678,
2574
+ "loss": 0.0126,
2575
+ "step": 401
2576
+ },
2577
+ {
2578
+ "epoch": 0.57,
2579
+ "learning_rate": 0.00018327665985076448,
2580
+ "loss": 0.0192,
2581
+ "step": 402
2582
+ },
2583
+ {
2584
+ "epoch": 0.57,
2585
+ "learning_rate": 0.0001831937051565359,
2586
+ "loss": 0.0266,
2587
+ "step": 403
2588
+ },
2589
+ {
2590
+ "epoch": 0.57,
2591
+ "learning_rate": 0.00018311056409692106,
2592
+ "loss": 0.0056,
2593
+ "step": 404
2594
+ },
2595
+ {
2596
+ "epoch": 0.58,
2597
+ "learning_rate": 0.00018302723685816735,
2598
+ "loss": 0.0069,
2599
+ "step": 405
2600
+ },
2601
+ {
2602
+ "epoch": 0.58,
2603
+ "learning_rate": 0.00018294372362693935,
2604
+ "loss": 0.0046,
2605
+ "step": 406
2606
+ },
2607
+ {
2608
+ "epoch": 0.58,
2609
+ "learning_rate": 0.0001828600245903182,
2610
+ "loss": 0.01,
2611
+ "step": 407
2612
+ },
2613
+ {
2614
+ "epoch": 0.58,
2615
+ "learning_rate": 0.00018277613993580128,
2616
+ "loss": 0.0124,
2617
+ "step": 408
2618
+ },
2619
+ {
2620
+ "epoch": 0.58,
2621
+ "learning_rate": 0.00018269206985130186,
2622
+ "loss": 0.0037,
2623
+ "step": 409
2624
+ },
2625
+ {
2626
+ "epoch": 0.58,
2627
+ "learning_rate": 0.00018260781452514847,
2628
+ "loss": 0.024,
2629
+ "step": 410
2630
+ },
2631
+ {
2632
+ "epoch": 0.58,
2633
+ "learning_rate": 0.0001825233741460847,
2634
+ "loss": 0.0127,
2635
+ "step": 411
2636
+ },
2637
+ {
2638
+ "epoch": 0.59,
2639
+ "learning_rate": 0.00018243874890326865,
2640
+ "loss": 0.0159,
2641
+ "step": 412
2642
+ },
2643
+ {
2644
+ "epoch": 0.59,
2645
+ "learning_rate": 0.00018235393898627256,
2646
+ "loss": 0.0328,
2647
+ "step": 413
2648
+ },
2649
+ {
2650
+ "epoch": 0.59,
2651
+ "learning_rate": 0.00018226894458508235,
2652
+ "loss": 0.0187,
2653
+ "step": 414
2654
+ },
2655
+ {
2656
+ "epoch": 0.59,
2657
+ "learning_rate": 0.00018218376589009723,
2658
+ "loss": 0.0102,
2659
+ "step": 415
2660
+ },
2661
+ {
2662
+ "epoch": 0.59,
2663
+ "learning_rate": 0.00018209840309212923,
2664
+ "loss": 0.0117,
2665
+ "step": 416
2666
+ },
2667
+ {
2668
+ "epoch": 0.59,
2669
+ "learning_rate": 0.0001820128563824028,
2670
+ "loss": 0.0108,
2671
+ "step": 417
2672
+ },
2673
+ {
2674
+ "epoch": 0.59,
2675
+ "learning_rate": 0.00018192712595255434,
2676
+ "loss": 0.0105,
2677
+ "step": 418
2678
+ },
2679
+ {
2680
+ "epoch": 0.6,
2681
+ "learning_rate": 0.00018184121199463191,
2682
+ "loss": 0.0052,
2683
+ "step": 419
2684
+ },
2685
+ {
2686
+ "epoch": 0.6,
2687
+ "learning_rate": 0.00018175511470109462,
2688
+ "loss": 0.0165,
2689
+ "step": 420
2690
+ },
2691
+ {
2692
+ "epoch": 0.6,
2693
+ "eval_loss": 0.056613512337207794,
2694
+ "eval_runtime": 23.1787,
2695
+ "eval_samples_per_second": 43.143,
2696
+ "eval_steps_per_second": 10.786,
2697
+ "step": 420
2698
+ },
2699
+ {
2700
+ "epoch": 0.6,
2701
+ "learning_rate": 0.00018166883426481227,
2702
+ "loss": 0.0064,
2703
+ "step": 421
2704
+ },
2705
+ {
2706
+ "epoch": 0.6,
2707
+ "learning_rate": 0.00018158237087906496,
2708
+ "loss": 0.0081,
2709
+ "step": 422
2710
+ },
2711
+ {
2712
+ "epoch": 0.6,
2713
+ "learning_rate": 0.00018149572473754268,
2714
+ "loss": 0.0086,
2715
+ "step": 423
2716
+ },
2717
+ {
2718
+ "epoch": 0.6,
2719
+ "learning_rate": 0.00018140889603434466,
2720
+ "loss": 0.0086,
2721
+ "step": 424
2722
+ },
2723
+ {
2724
+ "epoch": 0.6,
2725
+ "learning_rate": 0.0001813218849639792,
2726
+ "loss": 0.012,
2727
+ "step": 425
2728
+ },
2729
+ {
2730
+ "epoch": 0.61,
2731
+ "learning_rate": 0.00018123469172136317,
2732
+ "loss": 0.0061,
2733
+ "step": 426
2734
+ },
2735
+ {
2736
+ "epoch": 0.61,
2737
+ "learning_rate": 0.0001811473165018214,
2738
+ "loss": 0.012,
2739
+ "step": 427
2740
+ },
2741
+ {
2742
+ "epoch": 0.61,
2743
+ "learning_rate": 0.0001810597595010865,
2744
+ "loss": 0.0072,
2745
+ "step": 428
2746
+ },
2747
+ {
2748
+ "epoch": 0.61,
2749
+ "learning_rate": 0.00018097202091529822,
2750
+ "loss": 0.0067,
2751
+ "step": 429
2752
+ },
2753
+ {
2754
+ "epoch": 0.61,
2755
+ "learning_rate": 0.00018088410094100309,
2756
+ "loss": 0.0134,
2757
+ "step": 430
2758
+ },
2759
+ {
2760
+ "epoch": 0.61,
2761
+ "learning_rate": 0.00018079599977515397,
2762
+ "loss": 0.0009,
2763
+ "step": 431
2764
+ },
2765
+ {
2766
+ "epoch": 0.61,
2767
+ "learning_rate": 0.00018070771761510973,
2768
+ "loss": 0.0177,
2769
+ "step": 432
2770
+ },
2771
+ {
2772
+ "epoch": 0.62,
2773
+ "learning_rate": 0.00018061925465863448,
2774
+ "loss": 0.0124,
2775
+ "step": 433
2776
+ },
2777
+ {
2778
+ "epoch": 0.62,
2779
+ "learning_rate": 0.00018053061110389758,
2780
+ "loss": 0.0053,
2781
+ "step": 434
2782
+ },
2783
+ {
2784
+ "epoch": 0.62,
2785
+ "learning_rate": 0.00018044178714947276,
2786
+ "loss": 0.0058,
2787
+ "step": 435
2788
+ },
2789
+ {
2790
+ "epoch": 0.62,
2791
+ "learning_rate": 0.0001803527829943379,
2792
+ "loss": 0.0168,
2793
+ "step": 436
2794
+ },
2795
+ {
2796
+ "epoch": 0.62,
2797
+ "learning_rate": 0.0001802635988378747,
2798
+ "loss": 0.0121,
2799
+ "step": 437
2800
+ },
2801
+ {
2802
+ "epoch": 0.62,
2803
+ "learning_rate": 0.0001801742348798679,
2804
+ "loss": 0.0132,
2805
+ "step": 438
2806
+ },
2807
+ {
2808
+ "epoch": 0.62,
2809
+ "learning_rate": 0.00018008469132050516,
2810
+ "loss": 0.003,
2811
+ "step": 439
2812
+ },
2813
+ {
2814
+ "epoch": 0.63,
2815
+ "learning_rate": 0.00017999496836037637,
2816
+ "loss": 0.0075,
2817
+ "step": 440
2818
+ },
2819
+ {
2820
+ "epoch": 0.63,
2821
+ "eval_loss": 0.053666725754737854,
2822
+ "eval_runtime": 23.2275,
2823
+ "eval_samples_per_second": 43.052,
2824
+ "eval_steps_per_second": 10.763,
2825
+ "step": 440
2826
+ },
2827
+ {
2828
+ "epoch": 0.63,
2829
+ "learning_rate": 0.00017990506620047339,
2830
+ "loss": 0.01,
2831
+ "step": 441
2832
+ },
2833
+ {
2834
+ "epoch": 0.63,
2835
+ "learning_rate": 0.00017981498504218943,
2836
+ "loss": 0.036,
2837
+ "step": 442
2838
+ },
2839
+ {
2840
+ "epoch": 0.63,
2841
+ "learning_rate": 0.00017972472508731878,
2842
+ "loss": 0.0158,
2843
+ "step": 443
2844
+ },
2845
+ {
2846
+ "epoch": 0.63,
2847
+ "learning_rate": 0.00017963428653805614,
2848
+ "loss": 0.0085,
2849
+ "step": 444
2850
+ },
2851
+ {
2852
+ "epoch": 0.63,
2853
+ "learning_rate": 0.00017954366959699637,
2854
+ "loss": 0.0137,
2855
+ "step": 445
2856
+ },
2857
+ {
2858
+ "epoch": 0.63,
2859
+ "learning_rate": 0.00017945287446713393,
2860
+ "loss": 0.0236,
2861
+ "step": 446
2862
+ },
2863
+ {
2864
+ "epoch": 0.64,
2865
+ "learning_rate": 0.00017936190135186246,
2866
+ "loss": 0.0163,
2867
+ "step": 447
2868
+ },
2869
+ {
2870
+ "epoch": 0.64,
2871
+ "learning_rate": 0.0001792707504549743,
2872
+ "loss": 0.0066,
2873
+ "step": 448
2874
+ },
2875
+ {
2876
+ "epoch": 0.64,
2877
+ "learning_rate": 0.00017917942198066,
2878
+ "loss": 0.0067,
2879
+ "step": 449
2880
+ },
2881
+ {
2882
+ "epoch": 0.64,
2883
+ "learning_rate": 0.00017908791613350803,
2884
+ "loss": 0.0085,
2885
+ "step": 450
2886
+ },
2887
+ {
2888
+ "epoch": 0.64,
2889
+ "learning_rate": 0.00017899623311850405,
2890
+ "loss": 0.0193,
2891
+ "step": 451
2892
+ },
2893
+ {
2894
+ "epoch": 0.64,
2895
+ "learning_rate": 0.0001789043731410307,
2896
+ "loss": 0.0127,
2897
+ "step": 452
2898
+ },
2899
+ {
2900
+ "epoch": 0.64,
2901
+ "learning_rate": 0.00017881233640686705,
2902
+ "loss": 0.0104,
2903
+ "step": 453
2904
+ },
2905
+ {
2906
+ "epoch": 0.65,
2907
+ "learning_rate": 0.000178720123122188,
2908
+ "loss": 0.0138,
2909
+ "step": 454
2910
+ },
2911
+ {
2912
+ "epoch": 0.65,
2913
+ "learning_rate": 0.00017862773349356414,
2914
+ "loss": 0.0056,
2915
+ "step": 455
2916
+ },
2917
+ {
2918
+ "epoch": 0.65,
2919
+ "learning_rate": 0.00017853516772796093,
2920
+ "loss": 0.0126,
2921
+ "step": 456
2922
+ },
2923
+ {
2924
+ "epoch": 0.65,
2925
+ "learning_rate": 0.00017844242603273848,
2926
+ "loss": 0.0055,
2927
+ "step": 457
2928
+ },
2929
+ {
2930
+ "epoch": 0.65,
2931
+ "learning_rate": 0.00017834950861565102,
2932
+ "loss": 0.0143,
2933
+ "step": 458
2934
+ },
2935
+ {
2936
+ "epoch": 0.65,
2937
+ "learning_rate": 0.00017825641568484634,
2938
+ "loss": 0.0047,
2939
+ "step": 459
2940
+ },
2941
+ {
2942
+ "epoch": 0.65,
2943
+ "learning_rate": 0.00017816314744886552,
2944
+ "loss": 0.0096,
2945
+ "step": 460
2946
+ },
2947
+ {
2948
+ "epoch": 0.65,
2949
+ "eval_loss": 0.03381817042827606,
2950
+ "eval_runtime": 23.3676,
2951
+ "eval_samples_per_second": 42.794,
2952
+ "eval_steps_per_second": 10.699,
2953
+ "step": 460
2954
+ },
2955
+ {
2956
+ "epoch": 0.66,
2957
+ "learning_rate": 0.00017806970411664224,
2958
+ "loss": 0.0041,
2959
+ "step": 461
2960
+ },
2961
+ {
2962
+ "epoch": 0.66,
2963
+ "learning_rate": 0.0001779760858975025,
2964
+ "loss": 0.0116,
2965
+ "step": 462
2966
+ },
2967
+ {
2968
+ "epoch": 0.66,
2969
+ "learning_rate": 0.00017788229300116402,
2970
+ "loss": 0.0107,
2971
+ "step": 463
2972
+ },
2973
+ {
2974
+ "epoch": 0.66,
2975
+ "learning_rate": 0.0001777883256377358,
2976
+ "loss": 0.0034,
2977
+ "step": 464
2978
+ },
2979
+ {
2980
+ "epoch": 0.66,
2981
+ "learning_rate": 0.00017769418401771778,
2982
+ "loss": 0.0104,
2983
+ "step": 465
2984
+ },
2985
+ {
2986
+ "epoch": 0.66,
2987
+ "learning_rate": 0.00017759986835200016,
2988
+ "loss": 0.012,
2989
+ "step": 466
2990
+ },
2991
+ {
2992
+ "epoch": 0.66,
2993
+ "learning_rate": 0.00017750537885186302,
2994
+ "loss": 0.0083,
2995
+ "step": 467
2996
+ },
2997
+ {
2998
+ "epoch": 0.67,
2999
+ "learning_rate": 0.00017741071572897592,
3000
+ "loss": 0.0076,
3001
+ "step": 468
3002
+ },
3003
+ {
3004
+ "epoch": 0.67,
3005
+ "learning_rate": 0.0001773158791953973,
3006
+ "loss": 0.0176,
3007
+ "step": 469
3008
+ },
3009
+ {
3010
+ "epoch": 0.67,
3011
+ "learning_rate": 0.00017722086946357415,
3012
+ "loss": 0.0024,
3013
+ "step": 470
3014
+ },
3015
+ {
3016
+ "epoch": 0.67,
3017
+ "learning_rate": 0.00017712568674634134,
3018
+ "loss": 0.0112,
3019
+ "step": 471
3020
+ },
3021
+ {
3022
+ "epoch": 0.67,
3023
+ "learning_rate": 0.0001770303312569213,
3024
+ "loss": 0.0172,
3025
+ "step": 472
3026
+ },
3027
+ {
3028
+ "epoch": 0.67,
3029
+ "learning_rate": 0.00017693480320892348,
3030
+ "loss": 0.0071,
3031
+ "step": 473
3032
+ },
3033
+ {
3034
+ "epoch": 0.67,
3035
+ "learning_rate": 0.0001768391028163439,
3036
+ "loss": 0.0055,
3037
+ "step": 474
3038
+ },
3039
+ {
3040
+ "epoch": 0.68,
3041
+ "learning_rate": 0.00017674323029356472,
3042
+ "loss": 0.0022,
3043
+ "step": 475
3044
+ },
3045
+ {
3046
+ "epoch": 0.68,
3047
+ "learning_rate": 0.00017664718585535353,
3048
+ "loss": 0.0087,
3049
+ "step": 476
3050
+ },
3051
+ {
3052
+ "epoch": 0.68,
3053
+ "learning_rate": 0.00017655096971686321,
3054
+ "loss": 0.0158,
3055
+ "step": 477
3056
+ },
3057
+ {
3058
+ "epoch": 0.68,
3059
+ "learning_rate": 0.00017645458209363115,
3060
+ "loss": 0.0121,
3061
+ "step": 478
3062
+ },
3063
+ {
3064
+ "epoch": 0.68,
3065
+ "learning_rate": 0.00017635802320157894,
3066
+ "loss": 0.0146,
3067
+ "step": 479
3068
+ },
3069
+ {
3070
+ "epoch": 0.68,
3071
+ "learning_rate": 0.00017626129325701184,
3072
+ "loss": 0.012,
3073
+ "step": 480
3074
+ },
3075
+ {
3076
+ "epoch": 0.68,
3077
+ "eval_loss": 0.048898741602897644,
3078
+ "eval_runtime": 23.3056,
3079
+ "eval_samples_per_second": 42.908,
3080
+ "eval_steps_per_second": 10.727,
3081
+ "step": 480
3082
+ },
3083
+ {
3084
+ "epoch": 0.68,
3085
+ "learning_rate": 0.00017616439247661826,
3086
+ "loss": 0.0067,
3087
+ "step": 481
3088
+ },
3089
+ {
3090
+ "epoch": 0.69,
3091
+ "learning_rate": 0.0001760673210774694,
3092
+ "loss": 0.0096,
3093
+ "step": 482
3094
+ },
3095
+ {
3096
+ "epoch": 0.69,
3097
+ "learning_rate": 0.00017597007927701853,
3098
+ "loss": 0.0056,
3099
+ "step": 483
3100
+ },
3101
+ {
3102
+ "epoch": 0.69,
3103
+ "learning_rate": 0.00017587266729310067,
3104
+ "loss": 0.0078,
3105
+ "step": 484
3106
+ },
3107
+ {
3108
+ "epoch": 0.69,
3109
+ "learning_rate": 0.0001757750853439322,
3110
+ "loss": 0.0043,
3111
+ "step": 485
3112
+ },
3113
+ {
3114
+ "epoch": 0.69,
3115
+ "learning_rate": 0.00017567733364811015,
3116
+ "loss": 0.0075,
3117
+ "step": 486
3118
+ },
3119
+ {
3120
+ "epoch": 0.69,
3121
+ "learning_rate": 0.00017557941242461178,
3122
+ "loss": 0.0095,
3123
+ "step": 487
3124
+ },
3125
+ {
3126
+ "epoch": 0.69,
3127
+ "learning_rate": 0.00017548132189279417,
3128
+ "loss": 0.0083,
3129
+ "step": 488
3130
+ },
3131
+ {
3132
+ "epoch": 0.7,
3133
+ "learning_rate": 0.00017538306227239363,
3134
+ "loss": 0.0029,
3135
+ "step": 489
3136
+ },
3137
+ {
3138
+ "epoch": 0.7,
3139
+ "learning_rate": 0.00017528463378352528,
3140
+ "loss": 0.0038,
3141
+ "step": 490
3142
+ },
3143
+ {
3144
+ "epoch": 0.7,
3145
+ "learning_rate": 0.00017518603664668257,
3146
+ "loss": 0.005,
3147
+ "step": 491
3148
+ },
3149
+ {
3150
+ "epoch": 0.7,
3151
+ "learning_rate": 0.00017508727108273665,
3152
+ "loss": 0.0191,
3153
+ "step": 492
3154
+ },
3155
+ {
3156
+ "epoch": 0.7,
3157
+ "learning_rate": 0.00017498833731293605,
3158
+ "loss": 0.0092,
3159
+ "step": 493
3160
+ },
3161
+ {
3162
+ "epoch": 0.7,
3163
+ "learning_rate": 0.00017488923555890605,
3164
+ "loss": 0.0255,
3165
+ "step": 494
3166
+ },
3167
+ {
3168
+ "epoch": 0.7,
3169
+ "learning_rate": 0.0001747899660426483,
3170
+ "loss": 0.0262,
3171
+ "step": 495
3172
+ },
3173
+ {
3174
+ "epoch": 0.71,
3175
+ "learning_rate": 0.0001746905289865402,
3176
+ "loss": 0.0106,
3177
+ "step": 496
3178
+ },
3179
+ {
3180
+ "epoch": 0.71,
3181
+ "learning_rate": 0.00017459092461333446,
3182
+ "loss": 0.013,
3183
+ "step": 497
3184
+ },
3185
+ {
3186
+ "epoch": 0.71,
3187
+ "learning_rate": 0.00017449115314615866,
3188
+ "loss": 0.0077,
3189
+ "step": 498
3190
+ },
3191
+ {
3192
+ "epoch": 0.71,
3193
+ "learning_rate": 0.00017439121480851465,
3194
+ "loss": 0.0135,
3195
+ "step": 499
3196
+ },
3197
+ {
3198
+ "epoch": 0.71,
3199
+ "learning_rate": 0.00017429110982427815,
3200
+ "loss": 0.0041,
3201
+ "step": 500
3202
+ },
3203
+ {
3204
+ "epoch": 0.71,
3205
+ "eval_loss": 0.044191259890794754,
3206
+ "eval_runtime": 23.2484,
3207
+ "eval_samples_per_second": 43.014,
3208
+ "eval_steps_per_second": 10.753,
3209
+ "step": 500
3210
+ },
3211
+ {
3212
+ "epoch": 0.71,
3213
+ "learning_rate": 0.00017419083841769804,
3214
+ "loss": 0.0108,
3215
+ "step": 501
3216
+ },
3217
+ {
3218
+ "epoch": 0.71,
3219
+ "learning_rate": 0.00017409040081339623,
3220
+ "loss": 0.0149,
3221
+ "step": 502
3222
+ },
3223
+ {
3224
+ "epoch": 0.72,
3225
+ "learning_rate": 0.00017398979723636676,
3226
+ "loss": 0.0073,
3227
+ "step": 503
3228
+ },
3229
+ {
3230
+ "epoch": 0.72,
3231
+ "learning_rate": 0.00017388902791197553,
3232
+ "loss": 0.0121,
3233
+ "step": 504
3234
+ },
3235
+ {
3236
+ "epoch": 0.72,
3237
+ "learning_rate": 0.0001737880930659598,
3238
+ "loss": 0.0131,
3239
+ "step": 505
3240
+ },
3241
+ {
3242
+ "epoch": 0.72,
3243
+ "learning_rate": 0.00017368699292442748,
3244
+ "loss": 0.0114,
3245
+ "step": 506
3246
+ },
3247
+ {
3248
+ "epoch": 0.72,
3249
+ "learning_rate": 0.0001735857277138569,
3250
+ "loss": 0.0072,
3251
+ "step": 507
3252
+ },
3253
+ {
3254
+ "epoch": 0.72,
3255
+ "learning_rate": 0.00017348429766109608,
3256
+ "loss": 0.0047,
3257
+ "step": 508
3258
+ },
3259
+ {
3260
+ "epoch": 0.72,
3261
+ "learning_rate": 0.0001733827029933624,
3262
+ "loss": 0.0033,
3263
+ "step": 509
3264
+ },
3265
+ {
3266
+ "epoch": 0.73,
3267
+ "learning_rate": 0.00017328094393824186,
3268
+ "loss": 0.0025,
3269
+ "step": 510
3270
+ },
3271
+ {
3272
+ "epoch": 0.73,
3273
+ "learning_rate": 0.00017317902072368885,
3274
+ "loss": 0.0051,
3275
+ "step": 511
3276
+ },
3277
+ {
3278
+ "epoch": 0.73,
3279
+ "learning_rate": 0.00017307693357802544,
3280
+ "loss": 0.0161,
3281
+ "step": 512
3282
+ },
3283
+ {
3284
+ "epoch": 0.73,
3285
+ "learning_rate": 0.00017297468272994092,
3286
+ "loss": 0.0056,
3287
+ "step": 513
3288
+ },
3289
+ {
3290
+ "epoch": 0.73,
3291
+ "learning_rate": 0.0001728722684084913,
3292
+ "loss": 0.0166,
3293
+ "step": 514
3294
+ },
3295
+ {
3296
+ "epoch": 0.73,
3297
+ "learning_rate": 0.00017276969084309882,
3298
+ "loss": 0.0122,
3299
+ "step": 515
3300
+ },
3301
+ {
3302
+ "epoch": 0.73,
3303
+ "learning_rate": 0.00017266695026355136,
3304
+ "loss": 0.0028,
3305
+ "step": 516
3306
+ },
3307
+ {
3308
+ "epoch": 0.74,
3309
+ "learning_rate": 0.00017256404690000205,
3310
+ "loss": 0.0058,
3311
+ "step": 517
3312
+ },
3313
+ {
3314
+ "epoch": 0.74,
3315
+ "learning_rate": 0.00017246098098296862,
3316
+ "loss": 0.0174,
3317
+ "step": 518
3318
+ },
3319
+ {
3320
+ "epoch": 0.74,
3321
+ "learning_rate": 0.00017235775274333288,
3322
+ "loss": 0.0172,
3323
+ "step": 519
3324
+ },
3325
+ {
3326
+ "epoch": 0.74,
3327
+ "learning_rate": 0.00017225436241234045,
3328
+ "loss": 0.0012,
3329
+ "step": 520
3330
+ },
3331
+ {
3332
+ "epoch": 0.74,
3333
+ "eval_loss": 0.04391771927475929,
3334
+ "eval_runtime": 23.2947,
3335
+ "eval_samples_per_second": 42.928,
3336
+ "eval_steps_per_second": 10.732,
3337
+ "step": 520
3338
+ },
3339
+ {
3340
+ "epoch": 0.74,
3341
+ "learning_rate": 0.0001721508102215999,
3342
+ "loss": 0.0177,
3343
+ "step": 521
3344
+ },
3345
+ {
3346
+ "epoch": 0.74,
3347
+ "learning_rate": 0.0001720470964030824,
3348
+ "loss": 0.0142,
3349
+ "step": 522
3350
+ },
3351
+ {
3352
+ "epoch": 0.74,
3353
+ "learning_rate": 0.00017194322118912128,
3354
+ "loss": 0.0123,
3355
+ "step": 523
3356
+ },
3357
+ {
3358
+ "epoch": 0.75,
3359
+ "learning_rate": 0.00017183918481241133,
3360
+ "loss": 0.0049,
3361
+ "step": 524
3362
+ },
3363
+ {
3364
+ "epoch": 0.75,
3365
+ "learning_rate": 0.0001717349875060084,
3366
+ "loss": 0.0118,
3367
+ "step": 525
3368
+ },
3369
+ {
3370
+ "epoch": 0.75,
3371
+ "learning_rate": 0.00017163062950332884,
3372
+ "loss": 0.016,
3373
+ "step": 526
3374
+ },
3375
+ {
3376
+ "epoch": 0.75,
3377
+ "learning_rate": 0.00017152611103814902,
3378
+ "loss": 0.0057,
3379
+ "step": 527
3380
+ },
3381
+ {
3382
+ "epoch": 0.75,
3383
+ "learning_rate": 0.0001714214323446047,
3384
+ "loss": 0.0062,
3385
+ "step": 528
3386
+ },
3387
+ {
3388
+ "epoch": 0.75,
3389
+ "learning_rate": 0.0001713165936571906,
3390
+ "loss": 0.0195,
3391
+ "step": 529
3392
+ },
3393
+ {
3394
+ "epoch": 0.75,
3395
+ "learning_rate": 0.00017121159521075988,
3396
+ "loss": 0.0088,
3397
+ "step": 530
3398
+ },
3399
+ {
3400
+ "epoch": 0.76,
3401
+ "learning_rate": 0.00017110643724052354,
3402
+ "loss": 0.0048,
3403
+ "step": 531
3404
+ },
3405
+ {
3406
+ "epoch": 0.76,
3407
+ "learning_rate": 0.00017100111998204996,
3408
+ "loss": 0.0074,
3409
+ "step": 532
3410
+ },
3411
+ {
3412
+ "epoch": 0.76,
3413
+ "learning_rate": 0.00017089564367126433,
3414
+ "loss": 0.0102,
3415
+ "step": 533
3416
+ },
3417
+ {
3418
+ "epoch": 0.76,
3419
+ "learning_rate": 0.00017079000854444817,
3420
+ "loss": 0.011,
3421
+ "step": 534
3422
+ },
3423
+ {
3424
+ "epoch": 0.76,
3425
+ "learning_rate": 0.00017068421483823872,
3426
+ "loss": 0.017,
3427
+ "step": 535
3428
+ },
3429
+ {
3430
+ "epoch": 0.76,
3431
+ "learning_rate": 0.00017057826278962855,
3432
+ "loss": 0.0103,
3433
+ "step": 536
3434
+ },
3435
+ {
3436
+ "epoch": 0.76,
3437
+ "learning_rate": 0.0001704721526359648,
3438
+ "loss": 0.0069,
3439
+ "step": 537
3440
+ },
3441
+ {
3442
+ "epoch": 0.77,
3443
+ "learning_rate": 0.0001703658846149489,
3444
+ "loss": 0.0199,
3445
+ "step": 538
3446
+ },
3447
+ {
3448
+ "epoch": 0.77,
3449
+ "learning_rate": 0.00017025945896463593,
3450
+ "loss": 0.0076,
3451
+ "step": 539
3452
+ },
3453
+ {
3454
+ "epoch": 0.77,
3455
+ "learning_rate": 0.00017015287592343396,
3456
+ "loss": 0.0096,
3457
+ "step": 540
3458
+ },
3459
+ {
3460
+ "epoch": 0.77,
3461
+ "eval_loss": 0.03808086737990379,
3462
+ "eval_runtime": 23.0584,
3463
+ "eval_samples_per_second": 43.368,
3464
+ "eval_steps_per_second": 10.842,
3465
+ "step": 540
3466
+ },
3467
+ {
3468
+ "epoch": 0.77,
3469
+ "learning_rate": 0.00017004613573010378,
3470
+ "loss": 0.0056,
3471
+ "step": 541
3472
+ },
3473
+ {
3474
+ "epoch": 0.77,
3475
+ "learning_rate": 0.00016993923862375812,
3476
+ "loss": 0.0045,
3477
+ "step": 542
3478
+ },
3479
+ {
3480
+ "epoch": 0.77,
3481
+ "learning_rate": 0.0001698321848438613,
3482
+ "loss": 0.0084,
3483
+ "step": 543
3484
+ },
3485
+ {
3486
+ "epoch": 0.77,
3487
+ "learning_rate": 0.00016972497463022852,
3488
+ "loss": 0.014,
3489
+ "step": 544
3490
+ },
3491
+ {
3492
+ "epoch": 0.78,
3493
+ "learning_rate": 0.0001696176082230255,
3494
+ "loss": 0.0159,
3495
+ "step": 545
3496
+ },
3497
+ {
3498
+ "epoch": 0.78,
3499
+ "learning_rate": 0.0001695100858627678,
3500
+ "loss": 0.0061,
3501
+ "step": 546
3502
+ },
3503
+ {
3504
+ "epoch": 0.78,
3505
+ "learning_rate": 0.00016940240779032037,
3506
+ "loss": 0.0215,
3507
+ "step": 547
3508
+ },
3509
+ {
3510
+ "epoch": 0.78,
3511
+ "learning_rate": 0.00016929457424689695,
3512
+ "loss": 0.0134,
3513
+ "step": 548
3514
+ },
3515
+ {
3516
+ "epoch": 0.78,
3517
+ "learning_rate": 0.00016918658547405955,
3518
+ "loss": 0.0142,
3519
+ "step": 549
3520
+ },
3521
+ {
3522
+ "epoch": 0.78,
3523
+ "learning_rate": 0.00016907844171371793,
3524
+ "loss": 0.0017,
3525
+ "step": 550
3526
+ },
3527
+ {
3528
+ "epoch": 0.78,
3529
+ "learning_rate": 0.00016897014320812906,
3530
+ "loss": 0.0116,
3531
+ "step": 551
3532
+ },
3533
+ {
3534
+ "epoch": 0.79,
3535
+ "learning_rate": 0.00016886169019989658,
3536
+ "loss": 0.0058,
3537
+ "step": 552
3538
+ },
3539
+ {
3540
+ "epoch": 0.79,
3541
+ "learning_rate": 0.00016875308293197013,
3542
+ "loss": 0.0119,
3543
+ "step": 553
3544
+ },
3545
+ {
3546
+ "epoch": 0.79,
3547
+ "learning_rate": 0.00016864432164764506,
3548
+ "loss": 0.0126,
3549
+ "step": 554
3550
+ },
3551
+ {
3552
+ "epoch": 0.79,
3553
+ "learning_rate": 0.0001685354065905616,
3554
+ "loss": 0.0124,
3555
+ "step": 555
3556
+ },
3557
+ {
3558
+ "epoch": 0.79,
3559
+ "learning_rate": 0.00016842633800470455,
3560
+ "loss": 0.0046,
3561
+ "step": 556
3562
+ },
3563
+ {
3564
+ "epoch": 0.79,
3565
+ "learning_rate": 0.0001683171161344026,
3566
+ "loss": 0.0081,
3567
+ "step": 557
3568
+ },
3569
+ {
3570
+ "epoch": 0.79,
3571
+ "learning_rate": 0.0001682077412243278,
3572
+ "loss": 0.0043,
3573
+ "step": 558
3574
+ },
3575
+ {
3576
+ "epoch": 0.8,
3577
+ "learning_rate": 0.00016809821351949507,
3578
+ "loss": 0.004,
3579
+ "step": 559
3580
+ },
3581
+ {
3582
+ "epoch": 0.8,
3583
+ "learning_rate": 0.00016798853326526158,
3584
+ "loss": 0.005,
3585
+ "step": 560
3586
+ },
3587
+ {
3588
+ "epoch": 0.8,
3589
+ "eval_loss": 0.04487919807434082,
3590
+ "eval_runtime": 23.3744,
3591
+ "eval_samples_per_second": 42.782,
3592
+ "eval_steps_per_second": 10.695,
3593
+ "step": 560
3594
+ },
3595
+ {
3596
+ "epoch": 0.8,
3597
+ "learning_rate": 0.00016787870070732625,
3598
+ "loss": 0.0051,
3599
+ "step": 561
3600
+ },
3601
+ {
3602
+ "epoch": 0.8,
3603
+ "learning_rate": 0.00016776871609172918,
3604
+ "loss": 0.004,
3605
+ "step": 562
3606
+ },
3607
+ {
3608
+ "epoch": 0.8,
3609
+ "learning_rate": 0.0001676585796648511,
3610
+ "loss": 0.0174,
3611
+ "step": 563
3612
+ },
3613
+ {
3614
+ "epoch": 0.8,
3615
+ "learning_rate": 0.0001675482916734128,
3616
+ "loss": 0.0152,
3617
+ "step": 564
3618
+ },
3619
+ {
3620
+ "epoch": 0.8,
3621
+ "learning_rate": 0.0001674378523644746,
3622
+ "loss": 0.0178,
3623
+ "step": 565
3624
+ },
3625
+ {
3626
+ "epoch": 0.81,
3627
+ "learning_rate": 0.0001673272619854358,
3628
+ "loss": 0.0144,
3629
+ "step": 566
3630
+ },
3631
+ {
3632
+ "epoch": 0.81,
3633
+ "learning_rate": 0.00016721652078403412,
3634
+ "loss": 0.0103,
3635
+ "step": 567
3636
+ },
3637
+ {
3638
+ "epoch": 0.81,
3639
+ "learning_rate": 0.00016710562900834519,
3640
+ "loss": 0.0094,
3641
+ "step": 568
3642
+ },
3643
+ {
3644
+ "epoch": 0.81,
3645
+ "learning_rate": 0.00016699458690678184,
3646
+ "loss": 0.0191,
3647
+ "step": 569
3648
+ },
3649
+ {
3650
+ "epoch": 0.81,
3651
+ "learning_rate": 0.0001668833947280937,
3652
+ "loss": 0.0189,
3653
+ "step": 570
3654
+ },
3655
+ {
3656
+ "epoch": 0.81,
3657
+ "learning_rate": 0.00016677205272136667,
3658
+ "loss": 0.0102,
3659
+ "step": 571
3660
+ },
3661
+ {
3662
+ "epoch": 0.81,
3663
+ "learning_rate": 0.00016666056113602218,
3664
+ "loss": 0.012,
3665
+ "step": 572
3666
+ },
3667
+ {
3668
+ "epoch": 0.82,
3669
+ "learning_rate": 0.00016654892022181678,
3670
+ "loss": 0.0064,
3671
+ "step": 573
3672
+ },
3673
+ {
3674
+ "epoch": 0.82,
3675
+ "learning_rate": 0.00016643713022884148,
3676
+ "loss": 0.0066,
3677
+ "step": 574
3678
+ },
3679
+ {
3680
+ "epoch": 0.82,
3681
+ "learning_rate": 0.0001663251914075214,
3682
+ "loss": 0.0179,
3683
+ "step": 575
3684
+ },
3685
+ {
3686
+ "epoch": 0.82,
3687
+ "learning_rate": 0.00016621310400861486,
3688
+ "loss": 0.004,
3689
+ "step": 576
3690
+ },
3691
+ {
3692
+ "epoch": 0.82,
3693
+ "learning_rate": 0.00016610086828321315,
3694
+ "loss": 0.0062,
3695
+ "step": 577
3696
+ },
3697
+ {
3698
+ "epoch": 0.82,
3699
+ "learning_rate": 0.00016598848448273984,
3700
+ "loss": 0.0049,
3701
+ "step": 578
3702
+ },
3703
+ {
3704
+ "epoch": 0.82,
3705
+ "learning_rate": 0.0001658759528589501,
3706
+ "loss": 0.0213,
3707
+ "step": 579
3708
+ },
3709
+ {
3710
+ "epoch": 0.83,
3711
+ "learning_rate": 0.0001657632736639303,
3712
+ "loss": 0.0239,
3713
+ "step": 580
3714
+ },
3715
+ {
3716
+ "epoch": 0.83,
3717
+ "eval_loss": 0.04524041712284088,
3718
+ "eval_runtime": 23.2755,
3719
+ "eval_samples_per_second": 42.964,
3720
+ "eval_steps_per_second": 10.741,
3721
+ "step": 580
3722
+ },
3723
+ {
3724
+ "epoch": 0.83,
3725
+ "learning_rate": 0.0001656504471500974,
3726
+ "loss": 0.0164,
3727
+ "step": 581
3728
+ },
3729
+ {
3730
+ "epoch": 0.83,
3731
+ "learning_rate": 0.0001655374735701984,
3732
+ "loss": 0.007,
3733
+ "step": 582
3734
+ },
3735
+ {
3736
+ "epoch": 0.83,
3737
+ "learning_rate": 0.0001654243531773097,
3738
+ "loss": 0.0106,
3739
+ "step": 583
3740
+ },
3741
+ {
3742
+ "epoch": 0.83,
3743
+ "learning_rate": 0.0001653110862248366,
3744
+ "loss": 0.0066,
3745
+ "step": 584
3746
+ },
3747
+ {
3748
+ "epoch": 0.83,
3749
+ "learning_rate": 0.0001651976729665127,
3750
+ "loss": 0.009,
3751
+ "step": 585
3752
+ },
3753
+ {
3754
+ "epoch": 0.83,
3755
+ "learning_rate": 0.0001650841136563994,
3756
+ "loss": 0.0033,
3757
+ "step": 586
3758
+ },
3759
+ {
3760
+ "epoch": 0.83,
3761
+ "learning_rate": 0.00016497040854888517,
3762
+ "loss": 0.0079,
3763
+ "step": 587
3764
+ },
3765
+ {
3766
+ "epoch": 0.84,
3767
+ "learning_rate": 0.00016485655789868518,
3768
+ "loss": 0.004,
3769
+ "step": 588
3770
+ },
3771
+ {
3772
+ "epoch": 0.84,
3773
+ "learning_rate": 0.00016474256196084063,
3774
+ "loss": 0.0111,
3775
+ "step": 589
3776
+ },
3777
+ {
3778
+ "epoch": 0.84,
3779
+ "learning_rate": 0.00016462842099071817,
3780
+ "loss": 0.0094,
3781
+ "step": 590
3782
+ },
3783
+ {
3784
+ "epoch": 0.84,
3785
+ "learning_rate": 0.00016451413524400923,
3786
+ "loss": 0.0143,
3787
+ "step": 591
3788
+ },
3789
+ {
3790
+ "epoch": 0.84,
3791
+ "learning_rate": 0.00016439970497672977,
3792
+ "loss": 0.0051,
3793
+ "step": 592
3794
+ },
3795
+ {
3796
+ "epoch": 0.84,
3797
+ "learning_rate": 0.00016428513044521937,
3798
+ "loss": 0.0116,
3799
+ "step": 593
3800
+ },
3801
+ {
3802
+ "epoch": 0.84,
3803
+ "learning_rate": 0.00016417041190614076,
3804
+ "loss": 0.0064,
3805
+ "step": 594
3806
+ },
3807
+ {
3808
+ "epoch": 0.85,
3809
+ "learning_rate": 0.00016405554961647934,
3810
+ "loss": 0.0068,
3811
+ "step": 595
3812
+ },
3813
+ {
3814
+ "epoch": 0.85,
3815
+ "learning_rate": 0.00016394054383354247,
3816
+ "loss": 0.0033,
3817
+ "step": 596
3818
+ },
3819
+ {
3820
+ "epoch": 0.85,
3821
+ "learning_rate": 0.00016382539481495903,
3822
+ "loss": 0.0017,
3823
+ "step": 597
3824
+ },
3825
+ {
3826
+ "epoch": 0.85,
3827
+ "learning_rate": 0.00016371010281867866,
3828
+ "loss": 0.0167,
3829
+ "step": 598
3830
+ },
3831
+ {
3832
+ "epoch": 0.85,
3833
+ "learning_rate": 0.00016359466810297136,
3834
+ "loss": 0.0029,
3835
+ "step": 599
3836
+ },
3837
+ {
3838
+ "epoch": 0.85,
3839
+ "learning_rate": 0.00016347909092642694,
3840
+ "loss": 0.0166,
3841
+ "step": 600
3842
+ },
3843
+ {
3844
+ "epoch": 0.85,
3845
+ "eval_loss": 0.038260262459516525,
3846
+ "eval_runtime": 23.3542,
3847
+ "eval_samples_per_second": 42.819,
3848
+ "eval_steps_per_second": 10.705,
3849
+ "step": 600
3850
+ },
3851
+ {
3852
+ "epoch": 0.85,
3853
+ "learning_rate": 0.00016336337154795408,
3854
+ "loss": 0.0065,
3855
+ "step": 601
3856
+ },
3857
+ {
3858
+ "epoch": 0.86,
3859
+ "learning_rate": 0.00016324751022678028,
3860
+ "loss": 0.0157,
3861
+ "step": 602
3862
+ },
3863
+ {
3864
+ "epoch": 0.86,
3865
+ "learning_rate": 0.00016313150722245082,
3866
+ "loss": 0.0046,
3867
+ "step": 603
3868
+ },
3869
+ {
3870
+ "epoch": 0.86,
3871
+ "learning_rate": 0.00016301536279482846,
3872
+ "loss": 0.0033,
3873
+ "step": 604
3874
+ },
3875
+ {
3876
+ "epoch": 0.86,
3877
+ "learning_rate": 0.00016289907720409277,
3878
+ "loss": 0.006,
3879
+ "step": 605
3880
+ },
3881
+ {
3882
+ "epoch": 0.86,
3883
+ "learning_rate": 0.00016278265071073954,
3884
+ "loss": 0.0199,
3885
+ "step": 606
3886
+ },
3887
+ {
3888
+ "epoch": 0.86,
3889
+ "learning_rate": 0.00016266608357558016,
3890
+ "loss": 0.0096,
3891
+ "step": 607
3892
+ },
3893
+ {
3894
+ "epoch": 0.86,
3895
+ "learning_rate": 0.0001625493760597412,
3896
+ "loss": 0.0048,
3897
+ "step": 608
3898
+ },
3899
+ {
3900
+ "epoch": 0.87,
3901
+ "learning_rate": 0.00016243252842466346,
3902
+ "loss": 0.0157,
3903
+ "step": 609
3904
+ },
3905
+ {
3906
+ "epoch": 0.87,
3907
+ "learning_rate": 0.00016231554093210188,
3908
+ "loss": 0.0149,
3909
+ "step": 610
3910
+ },
3911
+ {
3912
+ "epoch": 0.87,
3913
+ "learning_rate": 0.00016219841384412456,
3914
+ "loss": 0.0103,
3915
+ "step": 611
3916
+ },
3917
+ {
3918
+ "epoch": 0.87,
3919
+ "learning_rate": 0.00016208114742311236,
3920
+ "loss": 0.007,
3921
+ "step": 612
3922
+ },
3923
+ {
3924
+ "epoch": 0.87,
3925
+ "learning_rate": 0.00016196374193175824,
3926
+ "loss": 0.0293,
3927
+ "step": 613
3928
+ },
3929
+ {
3930
+ "epoch": 0.87,
3931
+ "learning_rate": 0.00016184619763306675,
3932
+ "loss": 0.0025,
3933
+ "step": 614
3934
+ },
3935
+ {
3936
+ "epoch": 0.87,
3937
+ "learning_rate": 0.00016172851479035328,
3938
+ "loss": 0.0149,
3939
+ "step": 615
3940
+ },
3941
+ {
3942
+ "epoch": 0.88,
3943
+ "learning_rate": 0.00016161069366724375,
3944
+ "loss": 0.0039,
3945
+ "step": 616
3946
+ },
3947
+ {
3948
+ "epoch": 0.88,
3949
+ "learning_rate": 0.00016149273452767363,
3950
+ "loss": 0.0145,
3951
+ "step": 617
3952
+ },
3953
+ {
3954
+ "epoch": 0.88,
3955
+ "learning_rate": 0.00016137463763588777,
3956
+ "loss": 0.0168,
3957
+ "step": 618
3958
+ },
3959
+ {
3960
+ "epoch": 0.88,
3961
+ "learning_rate": 0.00016125640325643942,
3962
+ "loss": 0.0131,
3963
+ "step": 619
3964
+ },
3965
+ {
3966
+ "epoch": 0.88,
3967
+ "learning_rate": 0.00016113803165419003,
3968
+ "loss": 0.0081,
3969
+ "step": 620
3970
+ },
3971
+ {
3972
+ "epoch": 0.88,
3973
+ "eval_loss": 0.024927595630288124,
3974
+ "eval_runtime": 22.9947,
3975
+ "eval_samples_per_second": 43.488,
3976
+ "eval_steps_per_second": 10.872,
3977
+ "step": 620
3978
+ },
3979
+ {
3980
+ "epoch": 0.88,
3981
+ "learning_rate": 0.00016101952309430822,
3982
+ "loss": 0.0065,
3983
+ "step": 621
3984
+ },
3985
+ {
3986
+ "epoch": 0.88,
3987
+ "learning_rate": 0.00016090087784226959,
3988
+ "loss": 0.0083,
3989
+ "step": 622
3990
+ },
3991
+ {
3992
+ "epoch": 0.89,
3993
+ "learning_rate": 0.0001607820961638559,
3994
+ "loss": 0.0173,
3995
+ "step": 623
3996
+ },
3997
+ {
3998
+ "epoch": 0.89,
3999
+ "learning_rate": 0.00016066317832515446,
4000
+ "loss": 0.0125,
4001
+ "step": 624
4002
+ },
4003
+ {
4004
+ "epoch": 0.89,
4005
+ "learning_rate": 0.0001605441245925577,
4006
+ "loss": 0.0053,
4007
+ "step": 625
4008
+ },
4009
+ {
4010
+ "epoch": 0.89,
4011
+ "learning_rate": 0.00016042493523276238,
4012
+ "loss": 0.0241,
4013
+ "step": 626
4014
+ },
4015
+ {
4016
+ "epoch": 0.89,
4017
+ "learning_rate": 0.0001603056105127691,
4018
+ "loss": 0.0089,
4019
+ "step": 627
4020
+ },
4021
+ {
4022
+ "epoch": 0.89,
4023
+ "learning_rate": 0.0001601861506998818,
4024
+ "loss": 0.003,
4025
+ "step": 628
4026
+ },
4027
+ {
4028
+ "epoch": 0.89,
4029
+ "learning_rate": 0.00016006655606170687,
4030
+ "loss": 0.0141,
4031
+ "step": 629
4032
+ },
4033
+ {
4034
+ "epoch": 0.9,
4035
+ "learning_rate": 0.00015994682686615286,
4036
+ "loss": 0.0139,
4037
+ "step": 630
4038
+ },
4039
+ {
4040
+ "epoch": 0.9,
4041
+ "learning_rate": 0.00015982696338142963,
4042
+ "loss": 0.0096,
4043
+ "step": 631
4044
+ },
4045
+ {
4046
+ "epoch": 0.9,
4047
+ "learning_rate": 0.00015970696587604803,
4048
+ "loss": 0.0136,
4049
+ "step": 632
4050
+ },
4051
+ {
4052
+ "epoch": 0.9,
4053
+ "learning_rate": 0.000159586834618819,
4054
+ "loss": 0.0055,
4055
+ "step": 633
4056
+ },
4057
+ {
4058
+ "epoch": 0.9,
4059
+ "learning_rate": 0.0001594665698788531,
4060
+ "loss": 0.0128,
4061
+ "step": 634
4062
+ },
4063
+ {
4064
+ "epoch": 0.9,
4065
+ "learning_rate": 0.00015934617192556,
4066
+ "loss": 0.0066,
4067
+ "step": 635
4068
+ },
4069
+ {
4070
+ "epoch": 0.9,
4071
+ "learning_rate": 0.00015922564102864773,
4072
+ "loss": 0.0086,
4073
+ "step": 636
4074
+ },
4075
+ {
4076
+ "epoch": 0.91,
4077
+ "learning_rate": 0.00015910497745812217,
4078
+ "loss": 0.0068,
4079
+ "step": 637
4080
+ },
4081
+ {
4082
+ "epoch": 0.91,
4083
+ "learning_rate": 0.00015898418148428632,
4084
+ "loss": 0.016,
4085
+ "step": 638
4086
+ },
4087
+ {
4088
+ "epoch": 0.91,
4089
+ "learning_rate": 0.00015886325337773988,
4090
+ "loss": 0.0137,
4091
+ "step": 639
4092
+ },
4093
+ {
4094
+ "epoch": 0.91,
4095
+ "learning_rate": 0.0001587421934093785,
4096
+ "loss": 0.0166,
4097
+ "step": 640
4098
+ },
4099
+ {
4100
+ "epoch": 0.91,
4101
+ "eval_loss": 0.04424288496375084,
4102
+ "eval_runtime": 23.3621,
4103
+ "eval_samples_per_second": 42.804,
4104
+ "eval_steps_per_second": 10.701,
4105
+ "step": 640
4106
+ },
4107
+ {
4108
+ "epoch": 0.91,
4109
+ "learning_rate": 0.00015862100185039322,
4110
+ "loss": 0.0116,
4111
+ "step": 641
4112
+ },
4113
+ {
4114
+ "epoch": 0.91,
4115
+ "learning_rate": 0.00015849967897226986,
4116
+ "loss": 0.0092,
4117
+ "step": 642
4118
+ },
4119
+ {
4120
+ "epoch": 0.91,
4121
+ "learning_rate": 0.00015837822504678842,
4122
+ "loss": 0.0061,
4123
+ "step": 643
4124
+ },
4125
+ {
4126
+ "epoch": 0.92,
4127
+ "learning_rate": 0.00015825664034602245,
4128
+ "loss": 0.0141,
4129
+ "step": 644
4130
+ },
4131
+ {
4132
+ "epoch": 0.92,
4133
+ "learning_rate": 0.0001581349251423385,
4134
+ "loss": 0.0075,
4135
+ "step": 645
4136
+ },
4137
+ {
4138
+ "epoch": 0.92,
4139
+ "learning_rate": 0.0001580130797083954,
4140
+ "loss": 0.002,
4141
+ "step": 646
4142
+ },
4143
+ {
4144
+ "epoch": 0.92,
4145
+ "learning_rate": 0.00015789110431714377,
4146
+ "loss": 0.0139,
4147
+ "step": 647
4148
+ },
4149
+ {
4150
+ "epoch": 0.92,
4151
+ "learning_rate": 0.00015776899924182532,
4152
+ "loss": 0.0092,
4153
+ "step": 648
4154
+ },
4155
+ {
4156
+ "epoch": 0.92,
4157
+ "learning_rate": 0.00015764676475597228,
4158
+ "loss": 0.0056,
4159
+ "step": 649
4160
+ },
4161
+ {
4162
+ "epoch": 0.92,
4163
+ "learning_rate": 0.00015752440113340677,
4164
+ "loss": 0.016,
4165
+ "step": 650
4166
+ },
4167
+ {
4168
+ "epoch": 0.93,
4169
+ "learning_rate": 0.0001574019086482402,
4170
+ "loss": 0.0152,
4171
+ "step": 651
4172
+ },
4173
+ {
4174
+ "epoch": 0.93,
4175
+ "learning_rate": 0.00015727928757487266,
4176
+ "loss": 0.0028,
4177
+ "step": 652
4178
+ },
4179
+ {
4180
+ "epoch": 0.93,
4181
+ "learning_rate": 0.00015715653818799226,
4182
+ "loss": 0.0105,
4183
+ "step": 653
4184
+ },
4185
+ {
4186
+ "epoch": 0.93,
4187
+ "learning_rate": 0.00015703366076257456,
4188
+ "loss": 0.0082,
4189
+ "step": 654
4190
+ },
4191
+ {
4192
+ "epoch": 0.93,
4193
+ "learning_rate": 0.00015691065557388206,
4194
+ "loss": 0.0134,
4195
+ "step": 655
4196
+ },
4197
+ {
4198
+ "epoch": 0.93,
4199
+ "learning_rate": 0.0001567875228974632,
4200
+ "loss": 0.0052,
4201
+ "step": 656
4202
+ },
4203
+ {
4204
+ "epoch": 0.93,
4205
+ "learning_rate": 0.00015666426300915237,
4206
+ "loss": 0.0089,
4207
+ "step": 657
4208
+ },
4209
+ {
4210
+ "epoch": 0.94,
4211
+ "learning_rate": 0.00015654087618506858,
4212
+ "loss": 0.0094,
4213
+ "step": 658
4214
+ },
4215
+ {
4216
+ "epoch": 0.94,
4217
+ "learning_rate": 0.00015641736270161544,
4218
+ "loss": 0.013,
4219
+ "step": 659
4220
+ },
4221
+ {
4222
+ "epoch": 0.94,
4223
+ "learning_rate": 0.00015629372283548017,
4224
+ "loss": 0.0106,
4225
+ "step": 660
4226
+ },
4227
+ {
4228
+ "epoch": 0.94,
4229
+ "eval_loss": 0.03268582001328468,
4230
+ "eval_runtime": 23.2536,
4231
+ "eval_samples_per_second": 43.004,
4232
+ "eval_steps_per_second": 10.751,
4233
+ "step": 660
4234
+ },
4235
+ {
4236
+ "epoch": 0.94,
4237
+ "learning_rate": 0.00015616995686363314,
4238
+ "loss": 0.0145,
4239
+ "step": 661
4240
+ },
4241
+ {
4242
+ "epoch": 0.94,
4243
+ "learning_rate": 0.00015604606506332722,
4244
+ "loss": 0.0081,
4245
+ "step": 662
4246
+ },
4247
+ {
4248
+ "epoch": 0.94,
4249
+ "learning_rate": 0.00015592204771209715,
4250
+ "loss": 0.0115,
4251
+ "step": 663
4252
+ },
4253
+ {
4254
+ "epoch": 0.94,
4255
+ "learning_rate": 0.00015579790508775894,
4256
+ "loss": 0.0128,
4257
+ "step": 664
4258
+ },
4259
+ {
4260
+ "epoch": 0.95,
4261
+ "learning_rate": 0.00015567363746840922,
4262
+ "loss": 0.0006,
4263
+ "step": 665
4264
+ },
4265
+ {
4266
+ "epoch": 0.95,
4267
+ "learning_rate": 0.00015554924513242456,
4268
+ "loss": 0.0071,
4269
+ "step": 666
4270
+ },
4271
+ {
4272
+ "epoch": 0.95,
4273
+ "learning_rate": 0.00015542472835846098,
4274
+ "loss": 0.0076,
4275
+ "step": 667
4276
+ },
4277
+ {
4278
+ "epoch": 0.95,
4279
+ "learning_rate": 0.00015530008742545328,
4280
+ "loss": 0.0083,
4281
+ "step": 668
4282
+ },
4283
+ {
4284
+ "epoch": 0.95,
4285
+ "learning_rate": 0.00015517532261261435,
4286
+ "loss": 0.007,
4287
+ "step": 669
4288
+ },
4289
+ {
4290
+ "epoch": 0.95,
4291
+ "learning_rate": 0.0001550504341994346,
4292
+ "loss": 0.0052,
4293
+ "step": 670
4294
+ },
4295
+ {
4296
+ "epoch": 0.95,
4297
+ "learning_rate": 0.00015492542246568126,
4298
+ "loss": 0.0162,
4299
+ "step": 671
4300
+ },
4301
+ {
4302
+ "epoch": 0.96,
4303
+ "learning_rate": 0.00015480028769139796,
4304
+ "loss": 0.0155,
4305
+ "step": 672
4306
+ },
4307
+ {
4308
+ "epoch": 0.96,
4309
+ "learning_rate": 0.00015467503015690386,
4310
+ "loss": 0.001,
4311
+ "step": 673
4312
+ },
4313
+ {
4314
+ "epoch": 0.96,
4315
+ "learning_rate": 0.0001545496501427931,
4316
+ "loss": 0.0089,
4317
+ "step": 674
4318
+ },
4319
+ {
4320
+ "epoch": 0.96,
4321
+ "learning_rate": 0.00015442414792993416,
4322
+ "loss": 0.0121,
4323
+ "step": 675
4324
+ },
4325
+ {
4326
+ "epoch": 0.96,
4327
+ "learning_rate": 0.00015429852379946946,
4328
+ "loss": 0.012,
4329
+ "step": 676
4330
+ },
4331
+ {
4332
+ "epoch": 0.96,
4333
+ "learning_rate": 0.0001541727780328143,
4334
+ "loss": 0.0076,
4335
+ "step": 677
4336
+ },
4337
+ {
4338
+ "epoch": 0.96,
4339
+ "learning_rate": 0.00015404691091165662,
4340
+ "loss": 0.0006,
4341
+ "step": 678
4342
+ },
4343
+ {
4344
+ "epoch": 0.97,
4345
+ "learning_rate": 0.0001539209227179561,
4346
+ "loss": 0.0081,
4347
+ "step": 679
4348
+ },
4349
+ {
4350
+ "epoch": 0.97,
4351
+ "learning_rate": 0.0001537948137339437,
4352
+ "loss": 0.0161,
4353
+ "step": 680
4354
+ },
4355
+ {
4356
+ "epoch": 0.97,
4357
+ "eval_loss": 0.03857529163360596,
4358
+ "eval_runtime": 23.3772,
4359
+ "eval_samples_per_second": 42.777,
4360
+ "eval_steps_per_second": 10.694,
4361
+ "step": 680
4362
+ },
4363
+ {
4364
+ "epoch": 0.97,
4365
+ "learning_rate": 0.000153668584242121,
4366
+ "loss": 0.0015,
4367
+ "step": 681
4368
+ },
4369
+ {
4370
+ "epoch": 0.97,
4371
+ "learning_rate": 0.00015354223452525943,
4372
+ "loss": 0.0105,
4373
+ "step": 682
4374
+ },
4375
+ {
4376
+ "epoch": 0.97,
4377
+ "learning_rate": 0.00015341576486639985,
4378
+ "loss": 0.0162,
4379
+ "step": 683
4380
+ },
4381
+ {
4382
+ "epoch": 0.97,
4383
+ "learning_rate": 0.00015328917554885174,
4384
+ "loss": 0.0062,
4385
+ "step": 684
4386
+ },
4387
+ {
4388
+ "epoch": 0.97,
4389
+ "learning_rate": 0.00015316246685619263,
4390
+ "loss": 0.008,
4391
+ "step": 685
4392
+ },
4393
+ {
4394
+ "epoch": 0.98,
4395
+ "learning_rate": 0.00015303563907226753,
4396
+ "loss": 0.0146,
4397
+ "step": 686
4398
+ },
4399
+ {
4400
+ "epoch": 0.98,
4401
+ "learning_rate": 0.00015290869248118813,
4402
+ "loss": 0.0079,
4403
+ "step": 687
4404
+ },
4405
+ {
4406
+ "epoch": 0.98,
4407
+ "learning_rate": 0.00015278162736733237,
4408
+ "loss": 0.0097,
4409
+ "step": 688
4410
+ },
4411
+ {
4412
+ "epoch": 0.98,
4413
+ "learning_rate": 0.00015265444401534362,
4414
+ "loss": 0.006,
4415
+ "step": 689
4416
+ },
4417
+ {
4418
+ "epoch": 0.98,
4419
+ "learning_rate": 0.00015252714271013016,
4420
+ "loss": 0.0074,
4421
+ "step": 690
4422
+ },
4423
+ {
4424
+ "epoch": 0.98,
4425
+ "learning_rate": 0.00015239972373686452,
4426
+ "loss": 0.0015,
4427
+ "step": 691
4428
+ },
4429
+ {
4430
+ "epoch": 0.98,
4431
+ "learning_rate": 0.00015227218738098273,
4432
+ "loss": 0.0067,
4433
+ "step": 692
4434
+ },
4435
+ {
4436
+ "epoch": 0.99,
4437
+ "learning_rate": 0.0001521445339281839,
4438
+ "loss": 0.0111,
4439
+ "step": 693
4440
+ },
4441
+ {
4442
+ "epoch": 0.99,
4443
+ "learning_rate": 0.00015201676366442932,
4444
+ "loss": 0.016,
4445
+ "step": 694
4446
+ },
4447
+ {
4448
+ "epoch": 0.99,
4449
+ "learning_rate": 0.0001518888768759421,
4450
+ "loss": 0.01,
4451
+ "step": 695
4452
+ },
4453
+ {
4454
+ "epoch": 0.99,
4455
+ "learning_rate": 0.00015176087384920624,
4456
+ "loss": 0.0103,
4457
+ "step": 696
4458
+ },
4459
+ {
4460
+ "epoch": 0.99,
4461
+ "learning_rate": 0.00015163275487096623,
4462
+ "loss": 0.0143,
4463
+ "step": 697
4464
+ },
4465
+ {
4466
+ "epoch": 0.99,
4467
+ "learning_rate": 0.00015150452022822625,
4468
+ "loss": 0.0079,
4469
+ "step": 698
4470
+ },
4471
+ {
4472
+ "epoch": 0.99,
4473
+ "learning_rate": 0.00015137617020824964,
4474
+ "loss": 0.0082,
4475
+ "step": 699
4476
+ },
4477
+ {
4478
+ "epoch": 1.0,
4479
+ "learning_rate": 0.00015124770509855812,
4480
+ "loss": 0.0038,
4481
+ "step": 700
4482
+ },
4483
+ {
4484
+ "epoch": 1.0,
4485
+ "eval_loss": 0.037697676569223404,
4486
+ "eval_runtime": 23.1666,
4487
+ "eval_samples_per_second": 43.166,
4488
+ "eval_steps_per_second": 10.791,
4489
+ "step": 700
4490
+ },
4491
+ {
4492
+ "epoch": 1.0,
4493
+ "learning_rate": 0.0001511191251869313,
4494
+ "loss": 0.0111,
4495
+ "step": 701
4496
+ },
4497
+ {
4498
+ "epoch": 1.0,
4499
+ "learning_rate": 0.00015099043076140595,
4500
+ "loss": 0.0028,
4501
+ "step": 702
4502
+ },
4503
+ {
4504
+ "epoch": 1.0,
4505
+ "learning_rate": 0.0001508616221102753,
4506
+ "loss": 0.0068,
4507
+ "step": 703
4508
+ }
4509
+ ],
4510
+ "logging_steps": 1,
4511
+ "max_steps": 2109,
4512
+ "num_train_epochs": 3,
4513
+ "save_steps": 500,
4514
+ "total_flos": 9.242876643523953e+17,
4515
+ "trial_name": null,
4516
+ "trial_params": null
4517
+ }
checkpoint-703/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f130e25197a3f46f0428131d8b9093939760918998e06b5589ad2fbdf87ef81f
3
+ size 4475
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bnb_4bit_compute_dtype": "float32",
21
+ "bnb_4bit_quant_type": "fp4",
22
+ "bnb_4bit_use_double_quant": false,
23
+ "llm_int8_enable_fp32_cpu_offload": false,
24
+ "llm_int8_has_fp16_weight": false,
25
+ "llm_int8_skip_modules": null,
26
+ "llm_int8_threshold": 6.0,
27
+ "load_in_4bit": false,
28
+ "load_in_8bit": true,
29
+ "quant_method": "bitsandbytes"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.34.1",
37
+ "use_cache": false,
38
+ "vocab_size": 32000
39
+ }
runs/Nov15_09-59-18_compute-3-6.hamming.cluster/events.out.tfevents.1700071160.compute-3-6.hamming.cluster.45622.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcd05046c063d3f4c458b026c1685a2a32bce59e1ac86fd5e9f9c75256bcbeb7
3
+ size 364456
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }