File size: 45,897 Bytes
4ad74b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
# coding=utf-8
# Copyright 2025 The LLAMA4 and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import sqrt
from dataclasses import dataclass
from typing import Callable, Optional, Union, Tuple

from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F


from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations.hub_kernels import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_chunked_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging, is_torch_accelerator_available
from typing import Any, Literal, Optional, TypedDict, Union


from .configuration_step3 import Step3VLConfig,Step3TextConfig,Step3VisionEncoderConfig
from .vision_encoder import StepCLIPVisionTransformer

logger = logging.get_logger(__name__)

import torch
from typing import Optional

class Step3VLImagePixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values: torch.Tensor
    patch_pixel_values: Optional[torch.Tensor]
    num_patches: list[int]


class Step3VLImageEmbeddingInputs(TypedDict):
    type: Literal["image_embeds"]
    image_embeds: torch.Tensor


Step3VLImageInputs = Union[Step3VLImagePixelInputs,
                           Step3VLImageEmbeddingInputs]

def _flatten_embeddings(embeddings) -> torch.Tensor:
    """
    Recursively flattens and concatenates NestedTensors on all but the last
    dimension.
    """

    if isinstance(embeddings, torch.Tensor):
        # Flatten all but the last dimension.
        return embeddings.flatten(0, -2)

    return torch.cat(tuple(_flatten_embeddings(t) for t in embeddings))

def _embedding_count_expression(embeddings) -> str:
    """
    Constructs a debugging representation of the number of embeddings in the
    NestedTensors.
    """

    if isinstance(embeddings, torch.Tensor):
        return " x ".join([str(dim) for dim in embeddings.shape[:-1]])

    return " + ".join(
        _embedding_count_expression(inner) for inner in embeddings)

def _merge_multimodal_embeddings(
    inputs_embeds: torch.Tensor,
    is_multimodal: torch.Tensor,
    multimodal_embeddings,
) -> torch.Tensor:
    """
    Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the
    positions in ``inputs_embeds`` corresponding to placeholder tokens in
    ``input_ids``.

    Note:
        This updates ``inputs_embeds`` in place.
    """
    num_expected_tokens = is_multimodal.sum().item()
    assert isinstance(num_expected_tokens, int)

    flattened = _flatten_embeddings(multimodal_embeddings)
    if flattened.shape[0] != num_expected_tokens:
        expr = _embedding_count_expression(multimodal_embeddings)
        raise ValueError(
            f"Attempted to assign {expr} = {flattened.shape[0]} "
            f"multimodal tokens to {num_expected_tokens} placeholders")

    is_multimodal = is_multimodal.to(inputs_embeds.device)
    flattened = flattened.to(inputs_embeds.device)
    inputs_embeds[is_multimodal] = flattened
    return inputs_embeds

def merge_multimodal_embeddings(
    input_ids: torch.Tensor,
    inputs_embeds: torch.Tensor,
    multimodal_embeddings,
    placeholder_token_id: Union[int, list[int]],
) -> torch.Tensor:
    """
    Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the
    positions in ``inputs_embeds`` corresponding to placeholder tokens in
    ``input_ids``.
    
    ``placeholder_token_id`` can be a list of token ids (e.g, token ids 
    of img_start, img_break, and img_end tokens) when needed: This means 
    the order of these tokens in the ``input_ids`` MUST MATCH the order of 
    their embeddings in ``multimodal_embeddings`` since we need to 
    slice-merge instead of individually scattering.

    For example, if input_ids is "TTTTTSIIIBIIIBIIIETTT", where
    - T is text token
    - S is image start token
    - I is image embedding token
    - B is image break token
    - E is image end token.
    
    Then the image embeddings (that correspond to I's) from vision encoder 
    must be padded with embeddings of S, B, and E in the same order of 
    input_ids for a correct embedding merge.

    Note:
        This updates ``inputs_embeds`` in place.
    """
    if isinstance(placeholder_token_id, list):
        placeholder_token_id = torch.tensor(placeholder_token_id,
                                            device=input_ids.device)
        return _merge_multimodal_embeddings(
            inputs_embeds,
            torch.isin(input_ids, placeholder_token_id),
            multimodal_embeddings,
        )

    return _merge_multimodal_embeddings(
        inputs_embeds,
        (input_ids == placeholder_token_id),
        multimodal_embeddings,
    )

def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

# Adapted from transformers.models.llama.modeling_llama.eager_attention_forward -> llama4 doesn't cast attn weights to fp32
def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights

@dataclass
class Step3vCausalLMOutputWithPast(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    image_hidden_states (`torch.FloatTensor`, *optional*):
        A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
        image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    """

    loss: Optional[torch.FloatTensor] = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[list[torch.FloatTensor]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None

class Step3vRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        """
        Step3vRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(hidden_size))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

class Step3vRotaryEmbedding(nn.Module):
    def __init__(self, config: Step3VLConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embedding
        self.original_max_seq_len = config.max_position_embedding

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
        # self.rope_init_fn = _compute_ntk_by_part_parameters if self.rope_type == "ntk_bypart" else ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)

class Step3vMLP(nn.Module):
    def __init__(self, config, intermediate_size=None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN["silu"]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj

class MoELinear(nn.Module):
    def __init__(self, num_experts, in_features, out_features):
        super().__init__()
        self.num_experts = num_experts
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.empty(num_experts, out_features, in_features))
    def forward(self, x,expert_id):
        x = F.linear(x, self.weight[expert_id])
        return x

class Step3vMoEMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_experts = config.moe_num_experts
        self.top_k = config.moe_top_k
        self.hidden_size = config.hidden_size
        self.moe_intermediate_size = config.moe_intermediate_size
        # gating
        self.gate = nn.Linear(self.hidden_size, self.num_experts , bias=False)
        self.up_proj = MoELinear(self.num_experts, self.hidden_size, self.moe_intermediate_size)
        self.gate_proj = MoELinear(self.num_experts, self.hidden_size, self.moe_intermediate_size)
        self.down_proj = MoELinear(self.num_experts, self.moe_intermediate_size, self.hidden_size)

        self.act_fn = ACT2FN["silu"]

    def get_expert_output(self, inputs: torch.Tensor, expert_id):

        return self.down_proj(
            self.act_fn(self.gate_proj(inputs,expert_id)) * self.up_proj(inputs,expert_id),expert_id
        )

    def forward(self, hidden_states):
        """ """
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.gate(hidden_states)

        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        final_hidden_states = torch.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )

        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_idx in range(self.num_experts):
            idx, top_x = torch.where(expert_mask[expert_idx])

            # Index the correct hidden states and compute the expert hidden state for
            # the current expert. We need to make sure to multiply the output hidden
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
            current_hidden_states = (
                self.get_expert_output(current_state, expert_idx) * routing_weights[top_x, idx, None]
            )

            # However `index_add_` only support torch tensors for indexing so we'll use
            # the `top_x` tensor here.
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states


class Step3vAttention(nn.Module):
    def __init__(self, config: Step3VLConfig, layer_idx):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_heads = 1
        self.total_num_kv_heads = self.num_key_value_heads
        self.num_attention_heads = config.num_attention_heads
        self.num_key_value_groups = config.num_attention_heads // self.num_key_value_heads
        self.q_size = getattr(config, "share_q_dim", self.head_dim)
        self.kv_size = self.num_key_value_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.is_causal = True

        self.q_proj = nn.Linear(config.hidden_size, self.q_size , bias=False)
        self.k_proj = nn.Linear(config.hidden_size, self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, self.head_dim, bias=False)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)

        self.inter_norm = Step3vRMSNorm(self.q_size, eps=config.rms_norm_eps)

        self.wq = nn.Linear(self.q_size, self.head_dim * self.num_attention_heads, bias=False)


    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states).view((*input_shape, -1, self.head_dim)).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view((*input_shape, -1, self.head_dim)).transpose(1, 2)

        query_states = self.inter_norm(query_states)        
        query_states = self.wq(query_states).view((*input_shape, -1, self.head_dim)).transpose(1, 2)
        
        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        # TODO: considering FP8; 
        # RuntimeError: Expected attn_mask dtype to be bool or float or to match query dtype, 
        # but got attn_mask.dtype: long int and  query.dtype: c10::BFloat16 instead.
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        assert(attention_mask is None)
        
        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )
        attn_output = attn_output.reshape(*input_shape, -1)
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights

class Step3vDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.layer_idx = layer_idx
        self.self_attn = Step3vAttention(config, layer_idx)
        self.attention_type = "full_attention"
        
        moe_layers_enum = getattr(config, "moe_layers_enum", None)
        if moe_layers_enum is not None:
            moe_layers_idx = [int(i) for i in moe_layers_enum.strip().split(',')]
        else:
            moe_layers_idx = [i for i in range(1, config.num_hidden_layers)]
        self.is_moe_layer = layer_idx in moe_layers_idx
        self.use_moe = False
        
        if self.is_moe_layer:
            self.moe = Step3vMoEMLP(config)
            self.share_expert = Step3vMLP(config, intermediate_size=config.share_expert_dim)
            self.use_moe = True
        else:
            self.mlp = Step3vMLP(config, intermediate_size=config.intermediate_size)

        self.input_layernorm = Step3vRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Step3vRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[tuple[torch.Tensor]] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> torch.FloatTensor:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention
        hidden_states, _ = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        
        if self.use_moe:
            moe_output = self.moe(hidden_states)
            share_output = self.share_expert(hidden_states)
            hidden_states = moe_output + share_output
        else:
            hidden_states = self.mlp(hidden_states)
        
        if isinstance(hidden_states, tuple):
            hidden_states, _ = hidden_states
        
        hidden_states = residual + hidden_states
        return hidden_states

class Step3vPreTrainedModel(PreTrainedModel):
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = False
    _supports_sdpa = True
    _supports_flex_attn = True

    _supports_static_cache = True
    _supports_attention_backend = True

class Step3Model(Step3vPreTrainedModel, GenerationMixin):
    _no_split_modules = ["Step3vDecoderLayer"]
    base_model_prefix = "model"
    _tied_weights_keys = ["lm_head.weight"]
    config: Step3TextConfig

    def __init__(self, config: Step3TextConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Step3vDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Step3vRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Step3vRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self, input_ids):
        return self.embed_tokens(input_ids)

    @can_return_tuple
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False
                
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids.to(self.embed_tokens.weight.device))

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        hidden_states = inputs_embeds
        
        # It may already have been prepared by e.g. `generate`
        if not isinstance(causal_mask_mapping := attention_mask, dict):
            # Prepare mask arguments
            mask_kwargs = {
                "config": self.config,
                "input_embeds": inputs_embeds,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "position_ids": position_ids,
            }
            # Create the masks
            causal_mask_mapping = {
                "full_attention": create_causal_mask(**mask_kwargs),
            }
            

        # create position embeddings to be shared across the decoder layers
        freq_cis = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        i = 0
        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask_mapping[decoder_layer.attention_type],
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=freq_cis,
                **kwargs,
            )

            hidden_states = layer_outputs

        hidden_states = self.norm(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class Step3vModel(Step3vPreTrainedModel):
    # _no_split_modules = ["Step3vDecoderLayer"]
    # base_model_prefix = ""
    # _tied_weights_keys = ["lm_head.weight"]
    # _tp_plan = {"lm_head": "colwise_rep"}
    config: Step3VLConfig
    base_model_prefix = ""
    _checkpoint_conversion_mapping = {"^model": "language_model"}

    def __init__(self, config: Step3VLConfig):
        super().__init__(config)
        self.vision_model = StepCLIPVisionTransformer(config.vision_config)
        self.language_model = Step3Model(config.text_config)
        self.vocab_size = config.text_config.vocab_size
        
        self.vit_downsampler = nn.Conv2d(
            config.vision_config.hidden_size,
            config.vision_config.output_hidden_size,
            kernel_size=2,
            stride=config.understand_projector_stride)
        
        self.vit_downsampler2 = nn.Conv2d(
            config.vision_config.output_hidden_size,
            config.vision_config.output_hidden_size * 2,
            kernel_size=3,
            stride=2,
            padding=1,
        )
        
        self.vit_large_projector = nn.Linear(
            config.vision_config.output_hidden_size * 2,
            config.hidden_size,
            bias=config.projector_bias,
        )

        self.image_placeholder_token_id = config.image_token_id

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings  = None,
    ) -> torch.Tensor:
        input_ids = input_ids.squeeze(0)
        if multimodal_embeddings is None:
            inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        else:
            is_text = input_ids != self.config.image_token_id
            text_ids = input_ids[is_text]
            text_embeds = self.language_model.get_input_embeddings(text_ids)            
            inputs_embeds = torch.empty(input_ids.shape[0],
                                        text_embeds.shape[-1],
                                        dtype=text_embeds.dtype,
                                        device=text_embeds.device)
            inputs_embeds[is_text] = text_embeds
            inputs_embeds = merge_multimodal_embeddings(
                input_ids, inputs_embeds, multimodal_embeddings,
                self.config.image_token_id)
        inputs_embeds = inputs_embeds.unsqueeze(0)
        return inputs_embeds
       

    def set_input_embeddings(self, value):
        return self.language_model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.language_model = decoder

    def get_decoder(self):
        return self.language_model
    
    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[Step3VLImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        patch_pixel_values = kwargs.pop("patch_pixel_values", None)
        num_patches = kwargs.pop("num_patches", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values is None and image_embeds is None:
            return None

        if pixel_values is not None:
            # pixel_values = flatten_bn(pixel_values, concat=True)
            if pixel_values.dim() >= 3:
                pixel_values = pixel_values.view(-1, *pixel_values.shape[-3:])
            if patch_pixel_values is not None:
                # patch_pixel_values = flatten_bn(patch_pixel_values,
                #                                 concat=True)
                patch_pixel_values = patch_pixel_values.view(
                    -1, *patch_pixel_values.shape[-3:])
                # Handle empty patch_pixel_values by setting to None
                if patch_pixel_values.shape[0] == 0:
                    patch_pixel_values = None
            # num_patches = flatten_bn(num_patches, concat=True).tolist()

            return Step3VLImagePixelInputs(
                type="pixel_values",
                pixel_values=pixel_values.to(self.dtype).to(self.device),
                patch_pixel_values=patch_pixel_values.to(self.dtype).to(
                    self.device) if patch_pixel_values is not None else None,
                num_patches=num_patches,
            )

        if image_embeds is not None:
            if image_embeds.dim() == 2 or image_embeds.dim() >= 3:
                image_embeds = image_embeds.view(-1, image_embeds.shape[-1])
            else:
                raise ValueError(
                    f"Unexpected shape for image_embeds: {image_embeds.shape}")

            return Step3VLImageEmbeddingInputs(
                type="image_embeds",
                image_embeds=image_embeds.to(self.dtype).to(self.device),
            )
        return None
    
    def _process_image_features(self,
                                image_features: torch.Tensor) -> torch.Tensor:
        B, P = image_features.shape[:2]
        HW = int(sqrt(P))
        image_features = image_features.permute(0, 2, 1).view(B, -1, HW, HW)
        image_features = self.vit_downsampler(image_features)
        image_features = self.vit_downsampler2(image_features)
        n_dim = image_features.size(1)
        image_features = image_features.view(B, n_dim, -1).permute(0, 2, 1)
        image_features = self.vit_large_projector(image_features)
        return image_features

    def _get_vision_model_output(self,
                                 input_tensor: torch.Tensor) -> torch.Tensor:
        return self.vision_model(input_tensor)[:, 4:]

    def _process_image_input(
            self, image_input: Step3VLImageInputs) -> tuple[torch.Tensor, ...]:

        if image_input["type"] == "image_embeds":
            image_features = image_input["image_embeds"]
        else:
            image_features = self._get_vision_model_output(
                image_input["pixel_values"])
            patch_image_features = self._get_vision_model_output(
                image_input["patch_pixel_values"]
            ) if image_input["patch_pixel_values"] is not None else None
            num_patches = image_input["num_patches"]

        image_features = self._process_image_features(image_features)
        patch_image_features = self._process_image_features(
            patch_image_features) if patch_image_features is not None else None

        merged_image_features = []
        cur_patch_idx = 0
        for i, num_patch in enumerate(num_patches):
            cur_feature = []
            if num_patch > 0:
                patch_slice = patch_image_features[
                    cur_patch_idx:cur_patch_idx + num_patch]
                cur_feature.append(patch_slice.view(-1, patch_slice.shape[-1]))
            cur_feature.append(image_features[i].view(
                -1, image_features.shape[-1]))
            cur_patch_idx += num_patch
            merged_image_features.append(
                torch.cat(cur_feature) if len(cur_feature) >
                1 else cur_feature[0])
        return merged_image_features
    
    def get_multimodal_embeddings(self, **kwargs):
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return None
        vision_embeddings = self._process_image_input(image_input)
        return vision_embeddings

    @can_return_tuple
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        images: Optional[list[Image.Image]] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, Llama4ForCausalLM

        >>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        if inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.language_model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
            cache_position=cache_position,
            **kwargs,
        )
        
        output = Step3vCausalLMOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            attentions=outputs.attentions,
        )
        return output if return_dict else output.to_tuple()


class Step3vForConditionalGeneration(Step3vPreTrainedModel, GenerationMixin):
    _checkpoint_conversion_mapping = {
        "^vision_model": "model.vision_model",
        r"^model(?!\.(language_model|vision_model))": "model.language_model",
    }
    _tied_weights_keys = ["lm_head.weight"]
    config: Step3VLConfig
    
    def __init__(self, config: Step3VLConfig):
        super().__init__(config)
        self.model = Step3vModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False)

        self.post_init()
    
    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.model.set_decoder(decoder)

    def get_decoder(self):
        return self.model.get_decoder()
    
    @property
    def language_model(self):
        return self.model.language_model

    @property
    def visual(self):
        return self.model.visual

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        num_patches = None,
        patch_pixel_values = None,
        patch_newline_mask = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, Step3vCausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaForConditionalGeneration

        >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

        >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, text=prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "USER:  \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.model(
            input_ids=input_ids,
            num_patches = num_patches,
            patch_pixel_values = patch_pixel_values,
            patch_newline_mask=patch_newline_mask,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)

        los = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)

        return Step3vCausalLMOutputWithPast(
            logits=logits,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        attention_mask=None,
        cache_position=None,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        if cache_position[0] == 0:
            # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
            # Otherwise we need pixel values to be passed to model
            model_inputs["pixel_values"] = pixel_values

        return model_inputs
    
    def _fix_state_dict_key_on_load(self, key: str) -> tuple[str, bool]:
        if key.startswith("language_model."):
            return key[len("language_model."):], True
        
        return key, False