stelterlab commited on
Commit
419f12f
·
verified ·
1 Parent(s): 4b59011

Upload gptx_tokenizer.py

Browse files

added missing gptx_tokenizer.py

Files changed (1) hide show
  1. gptx_tokenizer.py +463 -0
gptx_tokenizer.py ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ import os
5
+ import warnings
6
+ from pathlib import Path
7
+ from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
8
+
9
+ import sentencepiece as spm
10
+ import numpy as np
11
+ import torch
12
+ from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
13
+ from transformers.tokenization_utils import PreTrainedTokenizer
14
+ from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
15
+
16
+
17
+ REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
18
+
19
+ class HFGPTXTokenizer(PreTrainedTokenizer):
20
+ """
21
+ A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
22
+ It is specifically designed to work with SentencePiece models and integrates
23
+ with Hugging Face's tokenizer utilities.
24
+ """
25
+
26
+ model_file_glob = "*tokenizer.json"
27
+ vocab_files_names = {"tokenizer_file": "tokenizer.json"}
28
+ decode_kwargs: List[str] = []
29
+
30
+ def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
31
+ """
32
+ Encode a given text using the tokenizer.
33
+
34
+ Args:
35
+ text (str): The text to encode.
36
+ return_tokens (bool): If True, returns token strings instead of token IDs.
37
+ is_continuation (bool): If True, uses a continuation tokenizer (if available).
38
+ Returns:
39
+ List[int] or List[str]: Encoded text as a list of token IDs or token strings.
40
+ """
41
+ assert self.tok is not None, "No tokenizer is currently loaded"
42
+
43
+ # Variant with additional sp processor:
44
+ tokenizer = self.continuation_tokenizer if is_continuation else self.tok
45
+
46
+ if return_tokens:
47
+ return tokenizer.encode_as_pieces(text)
48
+ else:
49
+ return tokenizer.encode(text)
50
+
51
+ def create_list_of_special_tokens(self) -> List[str]:
52
+ """
53
+ Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
54
+ and 256 additional placeholder tokens.
55
+ Returns:
56
+ List[str]: List of special tokens.
57
+ """
58
+ return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
59
+ f"<placeholder_tok_{i}>" for i in range(256)
60
+ ]
61
+
62
+ def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
63
+ if not os.path.isfile(config_path):
64
+ config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
65
+ if not config_path:
66
+ config_path = self._download_config_from_hub(repo_id=repo_id)
67
+
68
+ return config_path
69
+
70
+
71
+ def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
72
+ """
73
+ Load the tokenizer model from a file or download it from a repository.
74
+
75
+ Args:
76
+ model_file_or_name (str): Path to the model file or the model name.
77
+ repo_id (str, optional): Repository ID from which to download the model file.
78
+
79
+ Returns:
80
+ spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.
81
+
82
+ Raises:
83
+ ValueError: If repo_id is not provided when model_file_or_name is not a file.
84
+ OSError: If the model file cannot be loaded or downloaded.
85
+ """
86
+ if not os.path.isfile(model_file_or_name):
87
+ model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
88
+ if not model_file_or_name:
89
+ model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
90
+
91
+ try:
92
+ return spm.SentencePieceProcessor(model_file=model_file_or_name)
93
+ except Exception as e:
94
+ raise OSError(f"Failed to load tokenizer model: {str(e)}")
95
+
96
+ def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
97
+ try:
98
+ # List all files in the repo
99
+ repo_files = list_repo_files(repo_id)
100
+
101
+ # Find the tokenizer model file
102
+ tokenizer_files = [f for f in repo_files if f.endswith('.model')]
103
+ if not tokenizer_files:
104
+ raise FileNotFoundError(f"No .model file found in repository {repo_id}")
105
+
106
+ # Use the first .model file found
107
+ model_file = tokenizer_files[0]
108
+ print(f"Found tokenizer model file: {model_file}")
109
+
110
+ # Download the file
111
+ model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
112
+ print(f"Downloaded tokenizer model to: {model_file_or_name}")
113
+ except Exception as e:
114
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
115
+
116
+ return model_file_or_name
117
+
118
+ def _download_config_from_hub(self, repo_id: str):
119
+ if repo_id is None:
120
+ raise ValueError("repo_id must be provided if config_path is not a local file")
121
+
122
+ try:
123
+ # List all files in the repo
124
+ repo_files = list_repo_files(repo_id)
125
+
126
+ # Find the tokenizer config file
127
+ tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
128
+ if not tokenizer_files:
129
+ raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
130
+
131
+ # Use the first tokenizer_config.json file found
132
+ tokenizer_config_file = tokenizer_files[0]
133
+ print(f"Found tokenizer config file: {tokenizer_config_file}")
134
+
135
+ # Download the file
136
+ tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
137
+ print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
138
+ return tokenizer_config_file_or_name
139
+ except Exception as e:
140
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
141
+ def __init__(
142
+ self,
143
+ model_path: Optional[str] = None,
144
+ config_path: Optional[str] = None,
145
+ **kwargs: Any,
146
+ ) -> None:
147
+ """
148
+ Initialize the tokenizer.
149
+ Args:
150
+ model_path (Optional[str]): Path to the tokenizer model file.
151
+ config_path (Optional[str]): Path to the tokenizer configuration file.
152
+ **kwargs: Additional keyword arguments passed to the superclass.
153
+ This method also ensures backward compatibility by setting
154
+ `clean_up_tokenization_spaces` to False by default.
155
+ """
156
+ # Prevent cleanup of tokenization spaces to maintain backward compatibility
157
+ self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
158
+ self.vocab = None
159
+ cp_path = kwargs.get("name_or_path", ".")
160
+ if model_path is None:
161
+ model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
162
+ self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)
163
+
164
+ super().__init__(**kwargs)
165
+
166
+ # Specify special tokens which we know the value of.
167
+ # EOD from `tok` is used as what is called EOS in HuggingFace.
168
+ # Since there is no corresponding mapping for EOS from `tok` in
169
+ # HuggingFace, it is treated as an additional special token.
170
+ # Same for all other special tokens.
171
+
172
+
173
+ self.unk_token = "<unk>"
174
+ self.eos_token = "</s>"
175
+ self.bos_token = "<s>"
176
+ self.pad_token = "<pad>"
177
+ self.eod_token = "<eod>"
178
+
179
+ self.additional_special_tokens = self.create_list_of_special_tokens()
180
+
181
+ if config_path is None:
182
+ config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)
183
+
184
+ if os.path.isfile(config_path):
185
+ self.tokenizer_config = self.load_json(Path(config_path))
186
+ else: # Load from repo
187
+ self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))
188
+
189
+ @property
190
+ def vocab_size(self) -> int:
191
+ """
192
+ Get the size of the tokenizer vocabulary.
193
+ Returns:
194
+ int: The size of the vocabulary.
195
+ """
196
+ return self.tok.GetPieceSize()
197
+
198
+ def get_vocab(self) -> Dict[str, int]:
199
+ """
200
+ Get the vocabulary as a dictionary mapping token strings to their IDs.
201
+ Returns:
202
+ Dict[str, int]: Vocabulary mapping.
203
+ """
204
+ if self.vocab is None:
205
+ self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
206
+ return self.vocab
207
+
208
+ def _tokenize(self, text: str, **kwargs) -> List[int]:
209
+ """
210
+ Tokenize the input text.
211
+ Args:
212
+ text (str): Text to tokenize.
213
+ **kwargs: Additional keyword arguments.
214
+ Returns:
215
+ List[int]: List of token IDs.
216
+ """
217
+ return_tokens = kwargs.pop("return_tokens", True)
218
+ return self._encode(text, return_tokens=return_tokens, **kwargs)
219
+
220
+ def _convert_token_to_id(self, token: str) -> int:
221
+ """
222
+ Convert a token string to its corresponding ID.
223
+ Args:
224
+ token (str): The token to convert.
225
+ Returns:
226
+ int: The token's ID.
227
+ Raises:
228
+ ValueError: If the token is unknown and cannot be encoded to a single ID.
229
+ """
230
+ return self.tok.PieceToId(token)
231
+
232
+
233
+ def decode(
234
+ self,
235
+ token_ids: Union[List[int], List[List[int]]],
236
+ num_threads: Optional[int] = None,
237
+ skip_special_tokens: bool = False,
238
+ clean_up_tokenization_spaces: bool = False,
239
+ ) -> str:
240
+ """
241
+ Decode a list of token IDs into a string.
242
+ Args:
243
+ token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
244
+ num_threads (Optional[int]): Number of threads to use for decoding.
245
+ Returns:
246
+ str: Decoded string.
247
+ """
248
+ if isinstance(token_ids, torch.Tensor): # For PyTorch tensors
249
+ token_ids = token_ids.tolist()
250
+ elif isinstance(token_ids, np.ndarray): # For NumPy arrays
251
+ token_ids = token_ids.tolist()
252
+
253
+ output = self.tok.decode(input=token_ids, num_threads=num_threads)
254
+ if skip_special_tokens:
255
+ for substring in self.additional_special_tokens:
256
+ output = output.replace(substring, "")
257
+
258
+ if clean_up_tokenization_spaces:
259
+ warnings.warn(
260
+ "when cleaning up tokenization spaces, this will not behave "
261
+ "like the original `GPTXTokenizer`., Please supply "
262
+ "`clean_up_tokenization_spaces=False` for decoding."
263
+ )
264
+ output = self.clean_up_tokenization(output)
265
+
266
+ return output
267
+
268
+
269
+ def _convert_id_to_token(self, index: int) -> str:
270
+ """
271
+ Convert a token ID to its corresponding token string.
272
+ Args:
273
+ index (int): Token ID.
274
+ Returns:
275
+ str: Corresponding token string.
276
+ """
277
+ return self.tok.IdToPiece(index)
278
+
279
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
280
+ """
281
+ Convert a list of tokens into a single string.
282
+ Args:
283
+ tokens (List[str]): List of token strings.
284
+ Returns:
285
+ str: Concatenated string of tokens.
286
+ """
287
+ return self.tok.DecodePieces(tokens)
288
+
289
+ def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
290
+ """
291
+ Internal method to decode token IDs with additional arguments.
292
+ Args:
293
+ token_ids (List[int]): List of token IDs.
294
+ **kwargs: Additional arguments to pass to the decode method.
295
+ Returns:
296
+ str: Decoded string.
297
+ This method also issues a warning if unsupported arguments are provided.
298
+ """
299
+ passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
300
+ if len(passed_kwargs) != len(kwargs):
301
+ warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
302
+ text = self.decode(token_ids, **passed_kwargs)
303
+ return text
304
+
305
+ def save_tokenizer(self, save_dir: str) -> None:
306
+ if not os.path.isdir(save_dir):
307
+ print(f"Vocabulary path ({save_dir}) should be a directory")
308
+ return
309
+ out_vocab_file = os.path.join(save_dir, "tokenizer.model")
310
+
311
+ # if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
312
+ # copyfile(self.vocab_file, out_vocab_file)
313
+ # elif not os.path.isfile(self.vocab_file):
314
+ with open(out_vocab_file, "wb") as f:
315
+ content_spiece_model = self.tok.serialized_model_proto()
316
+ f.write(content_spiece_model)
317
+
318
+ return (out_vocab_file,)
319
+
320
+ def _decode(
321
+ self,
322
+ token_ids: List[int],
323
+ skip_special_tokens: bool = False,
324
+ clean_up_tokenization_spaces: bool = None,
325
+ spaces_between_special_tokens: bool = True,
326
+ **kwargs: Any,
327
+ ) -> str:
328
+ text = self._tok_decode(
329
+ token_ids,
330
+ skip_special_tokens=skip_special_tokens,
331
+ spaces_between_special_tokens=spaces_between_special_tokens,
332
+ **kwargs,
333
+ )
334
+
335
+ clean_up_tokenization_spaces = (
336
+ clean_up_tokenization_spaces
337
+ if clean_up_tokenization_spaces is not None
338
+ else self.clean_up_tokenization_spaces
339
+ )
340
+ if clean_up_tokenization_spaces:
341
+ warnings.warn(
342
+ "when cleaning up tokenization spaces, this will not behave "
343
+ "like the original `GPTXTokenizer`., Please supply "
344
+ "`clean_up_tokenization_spaces=False` for decoding."
345
+ )
346
+ clean_text = self.clean_up_tokenization(text)
347
+ return clean_text
348
+ else:
349
+ return text
350
+
351
+ def save_vocabulary(
352
+ self,
353
+ save_directory: str,
354
+ filename_prefix: Optional[str] = None,
355
+ ) -> Tuple[str]:
356
+ filename_prefix = filename_prefix + "-" if filename_prefix else ""
357
+ save_directory = Path(save_directory)
358
+
359
+ self._save_tokenizer_config(save_directory, filename_prefix)
360
+ tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)
361
+
362
+ return (tokenizer_file_path,)
363
+
364
+ def _save_tokenizer_config(
365
+ self,
366
+ save_directory: Path,
367
+ filename_prefix: str,
368
+ ) -> str:
369
+ self.save_tokenizer_config(save_directory)
370
+ old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
371
+ assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
372
+ new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
373
+ old_tokenizer_config_path.replace(new_tokenizer_config_path)
374
+ return str(new_tokenizer_config_path)
375
+
376
+ def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
377
+ files = list(Path(save_directory).glob(self.model_file_glob))
378
+ return files
379
+
380
+ def _get_tokenizer_file(self, files: List[Path]):
381
+ assert files, "no saved tokenizer file found"
382
+ assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
383
+ return files[0]
384
+
385
+ def _save_tokenizer(
386
+ self,
387
+ save_directory: Path,
388
+ filename_prefix: str,
389
+ ) -> str:
390
+ self.save_tokenizer(str(save_directory))
391
+ tokenizer_files = self._find_tokenizer_files(save_directory)
392
+ old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
393
+ assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
394
+ new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
395
+ old_tokenizer_file_path.replace(new_tokenizer_file_path)
396
+ return str(new_tokenizer_file_path)
397
+
398
+ def save_tokenizer_config(self, save_dir: Path) -> None:
399
+ # convert Path to str
400
+ for k in self.tokenizer_config:
401
+ if isinstance(self.tokenizer_config[k], Path):
402
+ self.tokenizer_config[k] = str(self.tokenizer_config[k])
403
+
404
+ info_file = save_dir / "tokenizer_config.json"
405
+ with info_file.open("w") as f:
406
+ json.dump(self.tokenizer_config, f, indent=4)
407
+
408
+ def load_json(self, path: Path) -> dict:
409
+ with path.open("r") as f:
410
+ return json.load(f)
411
+
412
+ class SPTokenizer(HFGPTXTokenizer):
413
+ model_file_glob = "*tokenizer.model"
414
+ vocab_files_names = {"tokenizer_file": "tokenizer.model"}
415
+ decode_kwargs = ["num_threads"]
416
+ # `is_continuation` does not work without this, but it doesn't
417
+ # implement all APIs of `PreTrainedTokenizer`.
418
+ def encode(self, text: str, **kwargs) -> List[int]:
419
+ return_tokens = kwargs.pop('return_tokens', False)
420
+ is_continuation = kwargs.pop('is_continuation', False)
421
+ return self._encode(
422
+ text,
423
+ return_tokens=return_tokens,
424
+ is_continuation=is_continuation,
425
+ )
426
+
427
+ def __init__(self, *args, **kwargs):
428
+ super().__init__(*args, **kwargs)
429
+
430
+ self.eos_token = "</s>"
431
+ self.eos_token_id = 2
432
+ self.system_messages_by_lang = { # translations by deepl / google translate
433
+ "BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa
434
+ "CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa
435
+ "DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa
436
+ "DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa
437
+ "EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa
438
+ "EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa
439
+ "ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa
440
+ "ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa
441
+ "FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa
442
+ "FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa
443
+ "GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa
444
+ "HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa
445
+ "HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa
446
+ "IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa
447
+ "LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa
448
+ "LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa
449
+ "MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa
450
+ "NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa
451
+ "PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa
452
+ "PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa
453
+ "RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa
454
+ "SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa
455
+ "SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa
456
+ "SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa
457
+ }
458
+ chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
459
+ self.chat_template = {
460
+ lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
461
+ for lang, sys_msg in self.system_messages_by_lang.items()
462
+ }
463
+ self.chat_template['default'] = f"System: {self.system_messages_by_lang['EN']}" + "{{- '\\n'}}\n" + chat_template