File size: 9,208 Bytes
ee66a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import sys
import textwrap
from matplotlib import transforms
from mmengine.config import Config, DictAction
from mmengine.dataset import Compose
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmengine.visualization.utils import img_from_canvas
from mmpretrain.datasets.builder import build_dataset
from mmpretrain.structures import DataSample
from mmpretrain.visualization import UniversalVisualizer, create_figure
try:
from matplotlib._tight_bbox import adjust_bbox
except ImportError:
# To be compatible with matplotlib 3.5
from matplotlib.tight_bbox import adjust_bbox
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
'-o',
default=None,
type=str,
help='If there is no display interface, you can save it.')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--phase',
'-p',
default='train',
type=str,
choices=['train', 'test', 'val'],
help='phase of dataset to visualize, accept "train" "test" and "val".'
' Defaults to "train".')
parser.add_argument(
'--show-number',
'-n',
type=int,
default=sys.maxsize,
help='number of images selected to visualize, must bigger than 0. if '
'the number is bigger than length of dataset, show all the images in '
'dataset; default "sys.maxsize", show all images in dataset')
parser.add_argument(
'--show-interval',
'-i',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--mode',
'-m',
default='transformed',
type=str,
choices=['original', 'transformed', 'concat', 'pipeline'],
help='display mode; display original pictures or transformed pictures'
' or comparison pictures. "original" means show images load from disk'
'; "transformed" means to show images after transformed; "concat" '
'means show images stitched by "original" and "output" images. '
'"pipeline" means show all the intermediate images. '
'Defaults to "transformed".')
parser.add_argument(
'--rescale-factor',
'-r',
type=float,
help='(For `mode=original`) Image rescale factor, which is useful if'
'the output is too large or too small.')
parser.add_argument(
'--channel-order',
'-c',
default='BGR',
choices=['BGR', 'RGB'],
help='The channel order of the showing images, could be "BGR" '
'or "RGB", Defaults to "BGR".')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def make_grid(imgs, names):
"""Concat list of pictures into a single big picture, align height here."""
# A large canvas to ensure all text clear.
figure = create_figure(dpi=150, figsize=(16, 9))
# deal with imgs
max_nrows = 1
img_shapes = []
for img in imgs:
if isinstance(img, list):
max_nrows = max(len(img), max_nrows)
img_shapes.append([i.shape[:2] for i in img])
else:
img_shapes.append(img.shape[:2])
gs = figure.add_gridspec(max_nrows, len(imgs))
for i, img in enumerate(imgs):
if isinstance(img, list):
for j in range(len(img)):
subplot = figure.add_subplot(gs[j, i])
subplot.axis(False)
subplot.imshow(img[j])
name = '\n'.join(textwrap.wrap(names[i] + str(j), width=20))
subplot.set_title(
f'{name}\n{img_shapes[i][j]}',
fontsize=15,
family='monospace')
else:
subplot = figure.add_subplot(gs[:, i])
subplot.axis(False)
subplot.imshow(img)
name = '\n'.join(textwrap.wrap(names[i], width=20))
subplot.set_title(
f'{name}\n{img_shapes[i]}', fontsize=15, family='monospace')
# Manage the gap of subplots
figure.tight_layout()
# Remove the white boundary (reserve 0.5 inches at the top to show label)
points = figure.get_tightbbox(
figure.canvas.get_renderer()).get_points() + [[0, 0], [0, 0.5]]
adjust_bbox(figure, transforms.Bbox(points))
return img_from_canvas(figure.canvas)
class InspectCompose(Compose):
"""Compose multiple transforms sequentially.
And record "img" field of all results in one list.
"""
def __init__(self, transforms, intermediate_imgs, visualizer):
super().__init__(transforms=transforms)
self.intermediate_imgs = intermediate_imgs
self.visualizer = visualizer
def __call__(self, data):
if 'img' in data:
self.intermediate_imgs.append({
'name': 'Original',
'img': data['img'].copy()
})
for t in self.transforms:
data = t(data)
if data is None:
return None
if 'img' in data:
img = data['img'].copy()
if 'mask' in data:
tmp_img = img[0] if isinstance(img, list) else img
tmp_img = self.visualizer.add_mask_to_image(
tmp_img,
DataSample().set_mask(data['mask']),
resize=tmp_img.shape[:2])
img = [tmp_img] + img[1:] if isinstance(img,
list) else tmp_img
self.intermediate_imgs.append({
'name': t.__class__.__name__,
'img': img
})
return data
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope('mmpretrain') # Use mmpretrain as default scope.
dataset_cfg = cfg.get(args.phase + '_dataloader').get('dataset').get('dataset')
dataset = build_dataset(dataset_cfg)
# init visualizer
cfg.visualizer.pop('type')
fig_cfg = dict(figsize=(16, 10))
visualizer = UniversalVisualizer(
**cfg.visualizer, fig_show_cfg=fig_cfg, fig_save_cfg=fig_cfg)
visualizer.dataset_meta = dataset.metainfo
# init inspection
intermediate_imgs = []
dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
intermediate_imgs, visualizer)
# init visualization image number
display_number = min(args.show_number, len(dataset))
progress_bar = ProgressBar(display_number)
for i, item in zip(range(display_number), dataset):
rescale_factor = None
if args.mode == 'original':
image = intermediate_imgs[0]['img']
# Only original mode need rescale factor, `make_grid` will use
# matplotlib to manage the size of subplots.
rescale_factor = args.rescale_factor
elif args.mode == 'transformed':
print(intermediate_imgs)
image = make_grid([intermediate_imgs[-1]['img']], ['transformed'])
elif args.mode == 'concat':
ori_image = intermediate_imgs[0]['img']
trans_image = intermediate_imgs[-1]['img']
image = make_grid([ori_image, trans_image],
['original', 'transformed'])
else:
image = make_grid([result['img'] for result in intermediate_imgs],
[result['name'] for result in intermediate_imgs])
intermediate_imgs.clear()
data_sample = item['data_samples'].numpy()
# get filename from dataset or just use index as filename
if hasattr(item['data_samples'], 'img_path'):
filename = osp.basename(item['data_samples'].img_path)
else:
# some dataset have not image path
filename = f'{i}.jpg'
out_file = osp.join(args.output_dir,
filename) if args.output_dir is not None else None
visualizer.visualize_cls(
image if args.channel_order == 'RGB' else image[..., ::-1],
data_sample,
rescale_factor=rescale_factor,
show=not args.not_show,
wait_time=args.show_interval,
name=filename,
out_file=out_file)
progress_bar.update()
if __name__ == '__main__':
main()
|