File size: 9,208 Bytes
ee66a83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import sys
import textwrap

from matplotlib import transforms
from mmengine.config import Config, DictAction
from mmengine.dataset import Compose
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmengine.visualization.utils import img_from_canvas

from mmpretrain.datasets.builder import build_dataset
from mmpretrain.structures import DataSample
from mmpretrain.visualization import UniversalVisualizer, create_figure

try:
    from matplotlib._tight_bbox import adjust_bbox
except ImportError:
    # To be compatible with matplotlib 3.5
    from matplotlib.tight_bbox import adjust_bbox


def parse_args():
    parser = argparse.ArgumentParser(description='Browse a dataset')
    parser.add_argument('config', help='train config file path')
    parser.add_argument(
        '--output-dir',
        '-o',
        default=None,
        type=str,
        help='If there is no display interface, you can save it.')
    parser.add_argument('--not-show', default=False, action='store_true')
    parser.add_argument(
        '--phase',
        '-p',
        default='train',
        type=str,
        choices=['train', 'test', 'val'],
        help='phase of dataset to visualize, accept "train" "test" and "val".'
        ' Defaults to "train".')
    parser.add_argument(
        '--show-number',
        '-n',
        type=int,
        default=sys.maxsize,
        help='number of images selected to visualize, must bigger than 0. if '
        'the number is bigger than length of dataset, show all the images in '
        'dataset; default "sys.maxsize", show all images in dataset')
    parser.add_argument(
        '--show-interval',
        '-i',
        type=float,
        default=2,
        help='the interval of show (s)')
    parser.add_argument(
        '--mode',
        '-m',
        default='transformed',
        type=str,
        choices=['original', 'transformed', 'concat', 'pipeline'],
        help='display mode; display original pictures or transformed pictures'
        ' or comparison pictures. "original" means show images load from disk'
        '; "transformed" means to show images after transformed; "concat" '
        'means show images stitched by "original" and "output" images. '
        '"pipeline" means show all the intermediate images. '
        'Defaults to "transformed".')
    parser.add_argument(
        '--rescale-factor',
        '-r',
        type=float,
        help='(For `mode=original`) Image rescale factor, which is useful if'
        'the output is too large or too small.')
    parser.add_argument(
        '--channel-order',
        '-c',
        default='BGR',
        choices=['BGR', 'RGB'],
        help='The channel order of the showing images, could be "BGR" '
        'or "RGB", Defaults to "BGR".')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    return args


def make_grid(imgs, names):
    """Concat list of pictures into a single big picture, align height here."""
    # A large canvas to ensure all text clear.
    figure = create_figure(dpi=150, figsize=(16, 9))

    # deal with imgs
    max_nrows = 1
    img_shapes = []
    for img in imgs:
        if isinstance(img, list):
            max_nrows = max(len(img), max_nrows)
            img_shapes.append([i.shape[:2] for i in img])
        else:
            img_shapes.append(img.shape[:2])
    gs = figure.add_gridspec(max_nrows, len(imgs))

    for i, img in enumerate(imgs):
        if isinstance(img, list):
            for j in range(len(img)):
                subplot = figure.add_subplot(gs[j, i])
                subplot.axis(False)
                subplot.imshow(img[j])
                name = '\n'.join(textwrap.wrap(names[i] + str(j), width=20))
                subplot.set_title(
                    f'{name}\n{img_shapes[i][j]}',
                    fontsize=15,
                    family='monospace')
        else:
            subplot = figure.add_subplot(gs[:, i])
            subplot.axis(False)
            subplot.imshow(img)
            name = '\n'.join(textwrap.wrap(names[i], width=20))
            subplot.set_title(
                f'{name}\n{img_shapes[i]}', fontsize=15, family='monospace')

    # Manage the gap of subplots
    figure.tight_layout()

    # Remove the white boundary (reserve 0.5 inches at the top to show label)
    points = figure.get_tightbbox(
        figure.canvas.get_renderer()).get_points() + [[0, 0], [0, 0.5]]
    adjust_bbox(figure, transforms.Bbox(points))

    return img_from_canvas(figure.canvas)


class InspectCompose(Compose):
    """Compose multiple transforms sequentially.

    And record "img" field of all results in one list.
    """

    def __init__(self, transforms, intermediate_imgs, visualizer):
        super().__init__(transforms=transforms)
        self.intermediate_imgs = intermediate_imgs
        self.visualizer = visualizer

    def __call__(self, data):
        if 'img' in data:
            self.intermediate_imgs.append({
                'name': 'Original',
                'img': data['img'].copy()
            })

        for t in self.transforms:
            data = t(data)
            if data is None:
                return None
            if 'img' in data:
                img = data['img'].copy()
                if 'mask' in data:
                    tmp_img = img[0] if isinstance(img, list) else img
                    tmp_img = self.visualizer.add_mask_to_image(
                        tmp_img,
                        DataSample().set_mask(data['mask']),
                        resize=tmp_img.shape[:2])
                    img = [tmp_img] + img[1:] if isinstance(img,
                                                            list) else tmp_img
                self.intermediate_imgs.append({
                    'name': t.__class__.__name__,
                    'img': img
                })
        return data


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    init_default_scope('mmpretrain')  # Use mmpretrain as default scope.

    dataset_cfg = cfg.get(args.phase + '_dataloader').get('dataset').get('dataset')
    dataset = build_dataset(dataset_cfg)

    # init visualizer
    cfg.visualizer.pop('type')
    fig_cfg = dict(figsize=(16, 10))
    visualizer = UniversalVisualizer(
        **cfg.visualizer, fig_show_cfg=fig_cfg, fig_save_cfg=fig_cfg)
    visualizer.dataset_meta = dataset.metainfo

    # init inspection
    intermediate_imgs = []
    dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
                                      intermediate_imgs, visualizer)

    # init visualization image number
    display_number = min(args.show_number, len(dataset))
    progress_bar = ProgressBar(display_number)

    for i, item in zip(range(display_number), dataset):

        rescale_factor = None
        if args.mode == 'original':
            image = intermediate_imgs[0]['img']
            # Only original mode need rescale factor, `make_grid` will use
            # matplotlib to manage the size of subplots.
            rescale_factor = args.rescale_factor
        elif args.mode == 'transformed':
            print(intermediate_imgs)
            image = make_grid([intermediate_imgs[-1]['img']], ['transformed'])
        elif args.mode == 'concat':
            ori_image = intermediate_imgs[0]['img']
            trans_image = intermediate_imgs[-1]['img']
            image = make_grid([ori_image, trans_image],
                              ['original', 'transformed'])
        else:
            image = make_grid([result['img'] for result in intermediate_imgs],
                              [result['name'] for result in intermediate_imgs])

        intermediate_imgs.clear()

        data_sample = item['data_samples'].numpy()

        # get filename from dataset or just use index as filename
        if hasattr(item['data_samples'], 'img_path'):
            filename = osp.basename(item['data_samples'].img_path)
        else:
            # some dataset have not image path
            filename = f'{i}.jpg'

        out_file = osp.join(args.output_dir,
                            filename) if args.output_dir is not None else None

        visualizer.visualize_cls(
            image if args.channel_order == 'RGB' else image[..., ::-1],
            data_sample,
            rescale_factor=rescale_factor,
            show=not args.not_show,
            wait_time=args.show_interval,
            name=filename,
            out_file=out_file)
        progress_bar.update()


if __name__ == '__main__':
    main()