xlstm-german-wikipedia / modeling_xlstm.py
stefan-it's picture
modeling: sync xLSTMForSequenceClassification with Patrick's codebase from https://github.com/HallerPatrick/helibrunna/blob/a1b377271867d5f23201ccacb55e017749aba487/model/modeling_xlstm.py
7b7eb08
raw
history blame
9.85 kB
from typing import Optional, Sequence, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from xlstm.components.init import small_init_init_
from xlstm.utils import WeightDecayOptimGroupMixin
from xlstm.xlstm_block_stack import xLSTMBlockStack as _xLSTMBlockStack
from .configuration_xlstm import xLSTMConfig
class xLSTMPreTrainedModel(PreTrainedModel):
"""Base class for all models."""
config_class = xLSTMConfig
class xLSTMBlockStack(_xLSTMBlockStack):
"""Small wrapper to expose hidden states"""
def forward(
self, x: torch.Tensor, **kwargs
) -> Tuple[torch.Tensor, Sequence[torch.Tensor]]:
hidden_states = ()
for block in self.blocks:
x = block(x, **kwargs)
hidden_states += (x,)
x = self.post_blocks_norm(x)
return x, hidden_states
class xLSTMModel(xLSTMPreTrainedModel):
def __init__(self, config: xLSTMConfig):
super().__init__(config)
self.config = config
self.token_embedding = nn.Embedding(
num_embeddings=config.vocab_size, embedding_dim=config.embedding_dim
)
_config = config.to_xlstm_config()
self.emb_dropout = (
nn.Dropout(_config.dropout)
if _config.add_embedding_dropout
else nn.Identity()
)
self.xlstm_block_stack = xLSTMBlockStack(config=_config)
def forward(
self,
input_ids: torch.LongTensor,
output_hidden_states: Optional[bool] = None,
return_dict=Optional[bool],
) -> Union[Tuple, BaseModelOutput]:
token_embedding = self.token_embedding(input_ids)
x = self.emb_dropout(token_embedding)
x, hidden_states = self.xlstm_block_stack(x)
if output_hidden_states:
hidden_states = (token_embedding,) + hidden_states
if not return_dict:
return x, hidden_states
return BaseModelOutput(
last_hidden_state=x,
hidden_states=hidden_states if output_hidden_states else None,
)
class xLSTMForCausalLM(xLSTMPreTrainedModel, WeightDecayOptimGroupMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: xLSTMConfig, **kwargs):
super().__init__(config)
self.config = config
self.vocab_size = config.vocab_size
self.model = xLSTMModel(config)
self.lm_head = nn.Linear(
in_features=config.embedding_dim,
out_features=config.vocab_size,
bias=False,
)
self.post_init()
# TODO: Add option for up-projection
def get_input_embeddings(self):
return self.model.token_embedding
def set_input_embeddings(self, value: nn.Module):
self.model.token_embedding = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def reset_parameters(self):
self.model.xlstm_block_stack.reset_parameters()
small_init_init_(
self.get_input_embeddings().weight, dim=self.config.embedding_dim
)
if not self.config.tie_word_embeddings:
small_init_init_(
self.get_output_embeddings().weight, dim=self.config.embedding_dim
)
def forward(
self,
input_ids: torch.Tensor,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output = self.model(
input_ids,
output_hidden_states=output_hidden_states,
)
hidden_state = output[0]
logits = self.lm_head(hidden_state)
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + output[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
hidden_states=output.hidden_states,
)
def step(
self,
idx: torch.Tensor,
state: dict[str, dict[str, tuple[torch.Tensor, ...]]] = None,
**kwargs,
) -> tuple[torch.Tensor, dict[str, dict[str, tuple[torch.Tensor, ...]]]]:
x = self.token_embedding(idx)
x = self.emb_dropout(x)
x, state = self.xlstm_block_stack.step(x, state=state, **kwargs)
logits = self.lm_head(x)
return logits, state
def _create_weight_decay_optim_groups(
self, **kwargs
) -> tuple[Sequence[nn.Parameter], Sequence[nn.Parameter]]:
weight_decay, no_weight_decay = super()._create_weight_decay_optim_groups(
**kwargs
)
# remove token embedding and add it to the correct group, accrording to the config
weight_decay = list(weight_decay)
removed = 0
for idx in range(len(weight_decay)):
if weight_decay[idx - removed] is self.get_input_embeddings().weight:
weight_decay.pop(idx - removed)
removed += 1
weight_decay = tuple(weight_decay)
# TODO: Fix this
# if self.config.weight_decay_on_embedding:
if True:
weight_decay += (self.get_input_embeddings().weight,)
else:
no_weight_decay += (self.get_input_embeddings().weight,)
return weight_decay, no_weight_decay
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = nn.Embedding(
new_num_tokens, self.token_embedding.embedding_dim
)
self.token_embedding = new_embeddings.to(self.device)
return new_embeddings
def tie_weights(self):
self.get_output_embeddings().weight = self.get_input_embeddings().weight
def prepare_inputs_for_generation(
self,
input_ids,
**kwargs,
):
model_inputs = {
"input_ids": input_ids.to(self.device),
}
return model_inputs
class xLSTMForSequenceClassification(xLSTMPreTrainedModel):
def __init__(self, config: xLSTMConfig, **kwargs):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.model = xLSTMModel(config)
self.classifier = nn.Linear(config.embedding_dim, config.num_labels, bias=False)
self.init_weights()
def forward(
self,
input_ids: torch.Tensor,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output = self.model(
input_ids,
output_hidden_states=output_hidden_states,
)
hidden_state = output[0]
logits = self.classifier(hidden_state)
batch_size = input_ids.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + output[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
hidden_states=output.hidden_states,
)