|
2023-10-20 09:18:28,284 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 128) |
|
(position_embeddings): Embedding(512, 128) |
|
(token_type_embeddings): Embedding(2, 128) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-1): 2 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=128, out_features=128, bias=True) |
|
(key): Linear(in_features=128, out_features=128, bias=True) |
|
(value): Linear(in_features=128, out_features=128, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=128, out_features=512, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=512, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=128, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 MultiCorpus: 6183 train + 680 dev + 2113 test sentences |
|
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Train: 6183 sentences |
|
2023-10-20 09:18:28,285 (train_with_dev=False, train_with_test=False) |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Training Params: |
|
2023-10-20 09:18:28,285 - learning_rate: "5e-05" |
|
2023-10-20 09:18:28,285 - mini_batch_size: "8" |
|
2023-10-20 09:18:28,285 - max_epochs: "10" |
|
2023-10-20 09:18:28,285 - shuffle: "True" |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Plugins: |
|
2023-10-20 09:18:28,285 - TensorboardLogger |
|
2023-10-20 09:18:28,285 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-20 09:18:28,285 - metric: "('micro avg', 'f1-score')" |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Computation: |
|
2023-10-20 09:18:28,285 - compute on device: cuda:0 |
|
2023-10-20 09:18:28,285 - embedding storage: none |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,285 Model training base path: "hmbench-topres19th/en-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-20 09:18:28,285 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,286 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:28,286 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-20 09:18:30,058 epoch 1 - iter 77/773 - loss 3.29697785 - time (sec): 1.77 - samples/sec: 7168.00 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-20 09:18:31,992 epoch 1 - iter 154/773 - loss 2.98890475 - time (sec): 3.71 - samples/sec: 6576.90 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-20 09:18:33,803 epoch 1 - iter 231/773 - loss 2.52454647 - time (sec): 5.52 - samples/sec: 6624.09 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-20 09:18:35,611 epoch 1 - iter 308/773 - loss 2.02302739 - time (sec): 7.32 - samples/sec: 6736.79 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-20 09:18:37,338 epoch 1 - iter 385/773 - loss 1.67463555 - time (sec): 9.05 - samples/sec: 6790.49 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-20 09:18:39,053 epoch 1 - iter 462/773 - loss 1.45168116 - time (sec): 10.77 - samples/sec: 6786.86 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-20 09:18:40,795 epoch 1 - iter 539/773 - loss 1.27870844 - time (sec): 12.51 - samples/sec: 6856.46 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-20 09:18:42,569 epoch 1 - iter 616/773 - loss 1.14349474 - time (sec): 14.28 - samples/sec: 6915.75 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-20 09:18:44,300 epoch 1 - iter 693/773 - loss 1.04649070 - time (sec): 16.01 - samples/sec: 6911.30 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-20 09:18:46,008 epoch 1 - iter 770/773 - loss 0.96192728 - time (sec): 17.72 - samples/sec: 6982.19 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-20 09:18:46,078 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:46,078 EPOCH 1 done: loss 0.9579 - lr: 0.000050 |
|
2023-10-20 09:18:47,081 DEV : loss 0.13065889477729797 - f1-score (micro avg) 0.0 |
|
2023-10-20 09:18:47,093 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:18:48,821 epoch 2 - iter 77/773 - loss 0.21812324 - time (sec): 1.73 - samples/sec: 7194.59 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-20 09:18:50,518 epoch 2 - iter 154/773 - loss 0.20906091 - time (sec): 3.42 - samples/sec: 7000.84 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-20 09:18:52,209 epoch 2 - iter 231/773 - loss 0.20993493 - time (sec): 5.12 - samples/sec: 6931.96 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-20 09:18:54,042 epoch 2 - iter 308/773 - loss 0.19690084 - time (sec): 6.95 - samples/sec: 6958.80 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-20 09:18:55,800 epoch 2 - iter 385/773 - loss 0.19499084 - time (sec): 8.71 - samples/sec: 7026.30 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-20 09:18:57,611 epoch 2 - iter 462/773 - loss 0.19104238 - time (sec): 10.52 - samples/sec: 6931.75 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-20 09:18:59,427 epoch 2 - iter 539/773 - loss 0.18943072 - time (sec): 12.33 - samples/sec: 6878.89 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-20 09:19:01,231 epoch 2 - iter 616/773 - loss 0.18586711 - time (sec): 14.14 - samples/sec: 6897.61 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-20 09:19:03,004 epoch 2 - iter 693/773 - loss 0.18459343 - time (sec): 15.91 - samples/sec: 6903.21 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-20 09:19:04,772 epoch 2 - iter 770/773 - loss 0.18021271 - time (sec): 17.68 - samples/sec: 6991.26 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-20 09:19:04,847 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:04,848 EPOCH 2 done: loss 0.1796 - lr: 0.000044 |
|
2023-10-20 09:19:06,215 DEV : loss 0.08806052803993225 - f1-score (micro avg) 0.4817 |
|
2023-10-20 09:19:06,227 saving best model |
|
2023-10-20 09:19:06,256 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:08,034 epoch 3 - iter 77/773 - loss 0.16021178 - time (sec): 1.78 - samples/sec: 6437.36 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-20 09:19:09,769 epoch 3 - iter 154/773 - loss 0.14807212 - time (sec): 3.51 - samples/sec: 6858.33 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-20 09:19:11,509 epoch 3 - iter 231/773 - loss 0.14019763 - time (sec): 5.25 - samples/sec: 6941.49 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-20 09:19:13,236 epoch 3 - iter 308/773 - loss 0.14847424 - time (sec): 6.98 - samples/sec: 7082.25 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-20 09:19:14,934 epoch 3 - iter 385/773 - loss 0.14709744 - time (sec): 8.68 - samples/sec: 7070.55 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-20 09:19:16,681 epoch 3 - iter 462/773 - loss 0.14818828 - time (sec): 10.42 - samples/sec: 7183.86 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-20 09:19:18,432 epoch 3 - iter 539/773 - loss 0.14929835 - time (sec): 12.18 - samples/sec: 7178.10 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-20 09:19:20,162 epoch 3 - iter 616/773 - loss 0.14786552 - time (sec): 13.91 - samples/sec: 7189.40 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-20 09:19:21,899 epoch 3 - iter 693/773 - loss 0.14779447 - time (sec): 15.64 - samples/sec: 7105.63 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-20 09:19:23,605 epoch 3 - iter 770/773 - loss 0.14693652 - time (sec): 17.35 - samples/sec: 7129.47 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-20 09:19:23,676 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:23,676 EPOCH 3 done: loss 0.1467 - lr: 0.000039 |
|
2023-10-20 09:19:24,745 DEV : loss 0.07945284247398376 - f1-score (micro avg) 0.585 |
|
2023-10-20 09:19:24,756 saving best model |
|
2023-10-20 09:19:24,790 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:26,577 epoch 4 - iter 77/773 - loss 0.13996426 - time (sec): 1.79 - samples/sec: 7057.97 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-20 09:19:28,330 epoch 4 - iter 154/773 - loss 0.13144568 - time (sec): 3.54 - samples/sec: 7020.35 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-20 09:19:30,061 epoch 4 - iter 231/773 - loss 0.13656365 - time (sec): 5.27 - samples/sec: 6788.28 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-20 09:19:31,745 epoch 4 - iter 308/773 - loss 0.13712233 - time (sec): 6.95 - samples/sec: 6967.80 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-20 09:19:33,517 epoch 4 - iter 385/773 - loss 0.13771739 - time (sec): 8.73 - samples/sec: 6955.05 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-20 09:19:35,269 epoch 4 - iter 462/773 - loss 0.13408346 - time (sec): 10.48 - samples/sec: 6958.02 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-20 09:19:37,000 epoch 4 - iter 539/773 - loss 0.13073922 - time (sec): 12.21 - samples/sec: 7056.03 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-20 09:19:38,795 epoch 4 - iter 616/773 - loss 0.13003178 - time (sec): 14.00 - samples/sec: 7078.88 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-20 09:19:40,490 epoch 4 - iter 693/773 - loss 0.13006617 - time (sec): 15.70 - samples/sec: 7082.33 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-20 09:19:42,234 epoch 4 - iter 770/773 - loss 0.12994693 - time (sec): 17.44 - samples/sec: 7100.14 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-20 09:19:42,298 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:42,298 EPOCH 4 done: loss 0.1299 - lr: 0.000033 |
|
2023-10-20 09:19:43,375 DEV : loss 0.07809021323919296 - f1-score (micro avg) 0.6071 |
|
2023-10-20 09:19:43,386 saving best model |
|
2023-10-20 09:19:43,425 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:19:45,188 epoch 5 - iter 77/773 - loss 0.11117031 - time (sec): 1.76 - samples/sec: 6996.81 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-20 09:19:46,900 epoch 5 - iter 154/773 - loss 0.11764714 - time (sec): 3.47 - samples/sec: 6894.04 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-20 09:19:48,635 epoch 5 - iter 231/773 - loss 0.11991202 - time (sec): 5.21 - samples/sec: 6905.69 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-20 09:19:50,432 epoch 5 - iter 308/773 - loss 0.11700014 - time (sec): 7.01 - samples/sec: 7024.72 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-20 09:19:52,197 epoch 5 - iter 385/773 - loss 0.11617792 - time (sec): 8.77 - samples/sec: 7091.97 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-20 09:19:53,901 epoch 5 - iter 462/773 - loss 0.11525526 - time (sec): 10.48 - samples/sec: 7097.11 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-20 09:19:55,632 epoch 5 - iter 539/773 - loss 0.11333040 - time (sec): 12.21 - samples/sec: 7074.53 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-20 09:19:57,353 epoch 5 - iter 616/773 - loss 0.11550300 - time (sec): 13.93 - samples/sec: 7091.84 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-20 09:19:59,064 epoch 5 - iter 693/773 - loss 0.11629394 - time (sec): 15.64 - samples/sec: 7154.16 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-20 09:20:00,821 epoch 5 - iter 770/773 - loss 0.11699897 - time (sec): 17.40 - samples/sec: 7117.38 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-20 09:20:00,890 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:00,890 EPOCH 5 done: loss 0.1169 - lr: 0.000028 |
|
2023-10-20 09:20:01,993 DEV : loss 0.07527422904968262 - f1-score (micro avg) 0.5973 |
|
2023-10-20 09:20:02,004 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:03,679 epoch 6 - iter 77/773 - loss 0.09373771 - time (sec): 1.67 - samples/sec: 7129.91 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-20 09:20:05,341 epoch 6 - iter 154/773 - loss 0.10168393 - time (sec): 3.34 - samples/sec: 7107.39 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-20 09:20:07,029 epoch 6 - iter 231/773 - loss 0.11169160 - time (sec): 5.02 - samples/sec: 7123.67 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-20 09:20:08,763 epoch 6 - iter 308/773 - loss 0.11308050 - time (sec): 6.76 - samples/sec: 7205.74 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-20 09:20:10,476 epoch 6 - iter 385/773 - loss 0.11734393 - time (sec): 8.47 - samples/sec: 7119.05 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-20 09:20:12,242 epoch 6 - iter 462/773 - loss 0.11359539 - time (sec): 10.24 - samples/sec: 7161.69 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-20 09:20:13,952 epoch 6 - iter 539/773 - loss 0.11053055 - time (sec): 11.95 - samples/sec: 7179.03 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-20 09:20:15,718 epoch 6 - iter 616/773 - loss 0.10958303 - time (sec): 13.71 - samples/sec: 7213.13 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-20 09:20:17,429 epoch 6 - iter 693/773 - loss 0.10856611 - time (sec): 15.42 - samples/sec: 7165.92 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-20 09:20:19,168 epoch 6 - iter 770/773 - loss 0.10997793 - time (sec): 17.16 - samples/sec: 7211.89 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-20 09:20:19,240 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:19,241 EPOCH 6 done: loss 0.1098 - lr: 0.000022 |
|
2023-10-20 09:20:20,340 DEV : loss 0.07457771897315979 - f1-score (micro avg) 0.6144 |
|
2023-10-20 09:20:20,354 saving best model |
|
2023-10-20 09:20:20,394 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:22,182 epoch 7 - iter 77/773 - loss 0.10104822 - time (sec): 1.79 - samples/sec: 7514.85 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-20 09:20:23,898 epoch 7 - iter 154/773 - loss 0.09821556 - time (sec): 3.50 - samples/sec: 7100.36 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-20 09:20:25,626 epoch 7 - iter 231/773 - loss 0.09548090 - time (sec): 5.23 - samples/sec: 7242.33 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-20 09:20:27,321 epoch 7 - iter 308/773 - loss 0.10355270 - time (sec): 6.93 - samples/sec: 7143.99 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-20 09:20:29,117 epoch 7 - iter 385/773 - loss 0.10438038 - time (sec): 8.72 - samples/sec: 7124.85 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-20 09:20:30,854 epoch 7 - iter 462/773 - loss 0.10313345 - time (sec): 10.46 - samples/sec: 7148.72 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-20 09:20:32,639 epoch 7 - iter 539/773 - loss 0.10557270 - time (sec): 12.24 - samples/sec: 7134.59 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-20 09:20:34,316 epoch 7 - iter 616/773 - loss 0.10463863 - time (sec): 13.92 - samples/sec: 7183.24 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-20 09:20:36,084 epoch 7 - iter 693/773 - loss 0.10402035 - time (sec): 15.69 - samples/sec: 7119.43 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-20 09:20:37,828 epoch 7 - iter 770/773 - loss 0.10392693 - time (sec): 17.43 - samples/sec: 7102.19 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-20 09:20:37,899 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:37,899 EPOCH 7 done: loss 0.1037 - lr: 0.000017 |
|
2023-10-20 09:20:39,024 DEV : loss 0.07657597213983536 - f1-score (micro avg) 0.6242 |
|
2023-10-20 09:20:39,037 saving best model |
|
2023-10-20 09:20:39,075 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:40,803 epoch 8 - iter 77/773 - loss 0.08347295 - time (sec): 1.73 - samples/sec: 7045.81 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-20 09:20:42,539 epoch 8 - iter 154/773 - loss 0.10176786 - time (sec): 3.46 - samples/sec: 7193.34 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-20 09:20:44,261 epoch 8 - iter 231/773 - loss 0.10219115 - time (sec): 5.19 - samples/sec: 7117.05 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-20 09:20:45,993 epoch 8 - iter 308/773 - loss 0.09661994 - time (sec): 6.92 - samples/sec: 7120.96 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-20 09:20:47,714 epoch 8 - iter 385/773 - loss 0.09443349 - time (sec): 8.64 - samples/sec: 7214.99 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-20 09:20:49,480 epoch 8 - iter 462/773 - loss 0.09714750 - time (sec): 10.40 - samples/sec: 7273.85 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-20 09:20:51,177 epoch 8 - iter 539/773 - loss 0.09639649 - time (sec): 12.10 - samples/sec: 7201.04 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-20 09:20:52,899 epoch 8 - iter 616/773 - loss 0.09879490 - time (sec): 13.82 - samples/sec: 7136.22 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-20 09:20:54,622 epoch 8 - iter 693/773 - loss 0.09745774 - time (sec): 15.55 - samples/sec: 7128.81 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-20 09:20:56,382 epoch 8 - iter 770/773 - loss 0.09749713 - time (sec): 17.31 - samples/sec: 7163.01 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-20 09:20:56,439 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:56,439 EPOCH 8 done: loss 0.0973 - lr: 0.000011 |
|
2023-10-20 09:20:57,540 DEV : loss 0.07944915443658829 - f1-score (micro avg) 0.6269 |
|
2023-10-20 09:20:57,552 saving best model |
|
2023-10-20 09:20:57,590 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:20:59,260 epoch 9 - iter 77/773 - loss 0.09459646 - time (sec): 1.67 - samples/sec: 7330.85 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-20 09:21:00,859 epoch 9 - iter 154/773 - loss 0.09513909 - time (sec): 3.27 - samples/sec: 7555.16 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-20 09:21:02,459 epoch 9 - iter 231/773 - loss 0.08891959 - time (sec): 4.87 - samples/sec: 7837.97 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-20 09:21:04,135 epoch 9 - iter 308/773 - loss 0.09023339 - time (sec): 6.54 - samples/sec: 7649.30 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-20 09:21:05,867 epoch 9 - iter 385/773 - loss 0.09340261 - time (sec): 8.28 - samples/sec: 7652.07 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-20 09:21:07,610 epoch 9 - iter 462/773 - loss 0.09643093 - time (sec): 10.02 - samples/sec: 7510.55 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-20 09:21:09,362 epoch 9 - iter 539/773 - loss 0.09664935 - time (sec): 11.77 - samples/sec: 7470.84 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-20 09:21:11,036 epoch 9 - iter 616/773 - loss 0.09738019 - time (sec): 13.45 - samples/sec: 7447.59 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-20 09:21:12,730 epoch 9 - iter 693/773 - loss 0.09569268 - time (sec): 15.14 - samples/sec: 7368.56 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-20 09:21:14,449 epoch 9 - iter 770/773 - loss 0.09441439 - time (sec): 16.86 - samples/sec: 7348.71 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-20 09:21:14,509 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:21:14,509 EPOCH 9 done: loss 0.0943 - lr: 0.000006 |
|
2023-10-20 09:21:15,576 DEV : loss 0.08020081371068954 - f1-score (micro avg) 0.6476 |
|
2023-10-20 09:21:15,587 saving best model |
|
2023-10-20 09:21:15,626 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:21:17,352 epoch 10 - iter 77/773 - loss 0.10683426 - time (sec): 1.73 - samples/sec: 6965.15 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-20 09:21:19,118 epoch 10 - iter 154/773 - loss 0.09922985 - time (sec): 3.49 - samples/sec: 7124.64 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-20 09:21:20,969 epoch 10 - iter 231/773 - loss 0.09606770 - time (sec): 5.34 - samples/sec: 7135.38 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-20 09:21:22,727 epoch 10 - iter 308/773 - loss 0.09168936 - time (sec): 7.10 - samples/sec: 7163.36 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-20 09:21:24,454 epoch 10 - iter 385/773 - loss 0.09319490 - time (sec): 8.83 - samples/sec: 7145.89 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-20 09:21:26,193 epoch 10 - iter 462/773 - loss 0.09108964 - time (sec): 10.57 - samples/sec: 7122.69 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-20 09:21:27,920 epoch 10 - iter 539/773 - loss 0.08863410 - time (sec): 12.29 - samples/sec: 7160.35 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-20 09:21:29,676 epoch 10 - iter 616/773 - loss 0.08839821 - time (sec): 14.05 - samples/sec: 7084.18 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-20 09:21:31,407 epoch 10 - iter 693/773 - loss 0.09194621 - time (sec): 15.78 - samples/sec: 7085.52 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-20 09:21:33,142 epoch 10 - iter 770/773 - loss 0.09345324 - time (sec): 17.52 - samples/sec: 7078.58 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-20 09:21:33,207 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:21:33,207 EPOCH 10 done: loss 0.0933 - lr: 0.000000 |
|
2023-10-20 09:21:34,289 DEV : loss 0.08138395845890045 - f1-score (micro avg) 0.6491 |
|
2023-10-20 09:21:34,302 saving best model |
|
2023-10-20 09:21:34,370 ---------------------------------------------------------------------------------------------------- |
|
2023-10-20 09:21:34,371 Loading model from best epoch ... |
|
2023-10-20 09:21:34,443 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET |
|
2023-10-20 09:21:37,354 |
|
Results: |
|
- F-score (micro) 0.5866 |
|
- F-score (macro) 0.3173 |
|
- Accuracy 0.4314 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.6274 0.6818 0.6535 946 |
|
BUILDING 0.3400 0.0919 0.1447 185 |
|
STREET 0.5556 0.0893 0.1538 56 |
|
|
|
micro avg 0.6136 0.5619 0.5866 1187 |
|
macro avg 0.5077 0.2877 0.3173 1187 |
|
weighted avg 0.5792 0.5619 0.5506 1187 |
|
|
|
2023-10-20 09:21:37,354 ---------------------------------------------------------------------------------------------------- |
|
|