|
2023-10-16 22:46:49,399 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,400 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-16 22:46:49,400 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,400 MultiCorpus: 6183 train + 680 dev + 2113 test sentences |
|
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator |
|
2023-10-16 22:46:49,400 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,400 Train: 6183 sentences |
|
2023-10-16 22:46:49,400 (train_with_dev=False, train_with_test=False) |
|
2023-10-16 22:46:49,400 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,400 Training Params: |
|
2023-10-16 22:46:49,400 - learning_rate: "5e-05" |
|
2023-10-16 22:46:49,400 - mini_batch_size: "8" |
|
2023-10-16 22:46:49,400 - max_epochs: "10" |
|
2023-10-16 22:46:49,400 - shuffle: "True" |
|
2023-10-16 22:46:49,400 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,400 Plugins: |
|
2023-10-16 22:46:49,400 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-16 22:46:49,400 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,401 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-16 22:46:49,401 - metric: "('micro avg', 'f1-score')" |
|
2023-10-16 22:46:49,401 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,401 Computation: |
|
2023-10-16 22:46:49,401 - compute on device: cuda:0 |
|
2023-10-16 22:46:49,401 - embedding storage: none |
|
2023-10-16 22:46:49,401 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,401 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" |
|
2023-10-16 22:46:49,401 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:49,401 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:46:54,117 epoch 1 - iter 77/773 - loss 1.85204228 - time (sec): 4.72 - samples/sec: 2772.74 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-16 22:46:58,843 epoch 1 - iter 154/773 - loss 1.09260658 - time (sec): 9.44 - samples/sec: 2663.29 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-16 22:47:03,506 epoch 1 - iter 231/773 - loss 0.78200160 - time (sec): 14.10 - samples/sec: 2710.45 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-16 22:47:07,811 epoch 1 - iter 308/773 - loss 0.62435683 - time (sec): 18.41 - samples/sec: 2733.35 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-16 22:47:12,365 epoch 1 - iter 385/773 - loss 0.52479921 - time (sec): 22.96 - samples/sec: 2728.68 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-16 22:47:16,890 epoch 1 - iter 462/773 - loss 0.45944559 - time (sec): 27.49 - samples/sec: 2705.16 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-16 22:47:21,384 epoch 1 - iter 539/773 - loss 0.40938835 - time (sec): 31.98 - samples/sec: 2709.25 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-16 22:47:25,730 epoch 1 - iter 616/773 - loss 0.37131140 - time (sec): 36.33 - samples/sec: 2724.14 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-16 22:47:30,373 epoch 1 - iter 693/773 - loss 0.34140050 - time (sec): 40.97 - samples/sec: 2722.91 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-16 22:47:34,837 epoch 1 - iter 770/773 - loss 0.31723684 - time (sec): 45.43 - samples/sec: 2726.82 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-16 22:47:34,988 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:47:34,988 EPOCH 1 done: loss 0.3166 - lr: 0.000050 |
|
2023-10-16 22:47:37,086 DEV : loss 0.05812298133969307 - f1-score (micro avg) 0.7137 |
|
2023-10-16 22:47:37,102 saving best model |
|
2023-10-16 22:47:37,457 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:47:41,895 epoch 2 - iter 77/773 - loss 0.09219451 - time (sec): 4.44 - samples/sec: 2766.63 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-16 22:47:46,460 epoch 2 - iter 154/773 - loss 0.08570322 - time (sec): 9.00 - samples/sec: 2825.73 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-16 22:47:50,870 epoch 2 - iter 231/773 - loss 0.08707063 - time (sec): 13.41 - samples/sec: 2761.19 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-16 22:47:55,496 epoch 2 - iter 308/773 - loss 0.08465278 - time (sec): 18.04 - samples/sec: 2736.45 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-16 22:47:59,913 epoch 2 - iter 385/773 - loss 0.08603529 - time (sec): 22.45 - samples/sec: 2728.10 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-16 22:48:04,824 epoch 2 - iter 462/773 - loss 0.08248188 - time (sec): 27.37 - samples/sec: 2732.13 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-16 22:48:09,328 epoch 2 - iter 539/773 - loss 0.08143942 - time (sec): 31.87 - samples/sec: 2723.81 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-16 22:48:13,974 epoch 2 - iter 616/773 - loss 0.08180843 - time (sec): 36.52 - samples/sec: 2708.15 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-16 22:48:18,340 epoch 2 - iter 693/773 - loss 0.07966322 - time (sec): 40.88 - samples/sec: 2712.23 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-16 22:48:23,004 epoch 2 - iter 770/773 - loss 0.07901639 - time (sec): 45.55 - samples/sec: 2719.62 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-16 22:48:23,163 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:48:23,163 EPOCH 2 done: loss 0.0788 - lr: 0.000044 |
|
2023-10-16 22:48:25,238 DEV : loss 0.04929770901799202 - f1-score (micro avg) 0.7824 |
|
2023-10-16 22:48:25,251 saving best model |
|
2023-10-16 22:48:25,719 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:48:30,138 epoch 3 - iter 77/773 - loss 0.05283669 - time (sec): 4.42 - samples/sec: 2848.46 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-16 22:48:34,806 epoch 3 - iter 154/773 - loss 0.05183408 - time (sec): 9.09 - samples/sec: 2757.45 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-16 22:48:39,342 epoch 3 - iter 231/773 - loss 0.05153972 - time (sec): 13.62 - samples/sec: 2737.19 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-16 22:48:43,865 epoch 3 - iter 308/773 - loss 0.04919031 - time (sec): 18.14 - samples/sec: 2713.46 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-16 22:48:48,279 epoch 3 - iter 385/773 - loss 0.05182767 - time (sec): 22.56 - samples/sec: 2699.47 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-16 22:48:52,627 epoch 3 - iter 462/773 - loss 0.05174989 - time (sec): 26.91 - samples/sec: 2694.28 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-16 22:48:57,120 epoch 3 - iter 539/773 - loss 0.05137726 - time (sec): 31.40 - samples/sec: 2702.93 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-16 22:49:01,721 epoch 3 - iter 616/773 - loss 0.05160722 - time (sec): 36.00 - samples/sec: 2710.49 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-16 22:49:06,370 epoch 3 - iter 693/773 - loss 0.05267520 - time (sec): 40.65 - samples/sec: 2713.63 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-16 22:49:11,167 epoch 3 - iter 770/773 - loss 0.05271309 - time (sec): 45.45 - samples/sec: 2725.20 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-16 22:49:11,328 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:49:11,328 EPOCH 3 done: loss 0.0526 - lr: 0.000039 |
|
2023-10-16 22:49:13,790 DEV : loss 0.06217540055513382 - f1-score (micro avg) 0.765 |
|
2023-10-16 22:49:13,803 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:49:18,337 epoch 4 - iter 77/773 - loss 0.03307915 - time (sec): 4.53 - samples/sec: 2597.75 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-16 22:49:23,144 epoch 4 - iter 154/773 - loss 0.03502772 - time (sec): 9.34 - samples/sec: 2708.64 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-16 22:49:27,501 epoch 4 - iter 231/773 - loss 0.03841144 - time (sec): 13.70 - samples/sec: 2704.05 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-16 22:49:31,990 epoch 4 - iter 308/773 - loss 0.03694235 - time (sec): 18.19 - samples/sec: 2696.06 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-16 22:49:36,598 epoch 4 - iter 385/773 - loss 0.03453724 - time (sec): 22.79 - samples/sec: 2720.71 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-16 22:49:41,295 epoch 4 - iter 462/773 - loss 0.03493765 - time (sec): 27.49 - samples/sec: 2732.97 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-16 22:49:45,665 epoch 4 - iter 539/773 - loss 0.03520193 - time (sec): 31.86 - samples/sec: 2712.03 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-16 22:49:50,371 epoch 4 - iter 616/773 - loss 0.03666515 - time (sec): 36.57 - samples/sec: 2713.85 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-16 22:49:54,733 epoch 4 - iter 693/773 - loss 0.03600062 - time (sec): 40.93 - samples/sec: 2716.65 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-16 22:49:59,478 epoch 4 - iter 770/773 - loss 0.03587709 - time (sec): 45.67 - samples/sec: 2713.34 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-16 22:49:59,640 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:49:59,640 EPOCH 4 done: loss 0.0358 - lr: 0.000033 |
|
2023-10-16 22:50:01,833 DEV : loss 0.09437456727027893 - f1-score (micro avg) 0.7548 |
|
2023-10-16 22:50:01,848 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:50:06,576 epoch 5 - iter 77/773 - loss 0.02673306 - time (sec): 4.73 - samples/sec: 2600.08 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-16 22:50:11,310 epoch 5 - iter 154/773 - loss 0.02324661 - time (sec): 9.46 - samples/sec: 2654.40 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-16 22:50:15,933 epoch 5 - iter 231/773 - loss 0.02222597 - time (sec): 14.08 - samples/sec: 2662.75 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-16 22:50:20,768 epoch 5 - iter 308/773 - loss 0.02255704 - time (sec): 18.92 - samples/sec: 2690.90 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-16 22:50:25,371 epoch 5 - iter 385/773 - loss 0.02407859 - time (sec): 23.52 - samples/sec: 2700.14 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-16 22:50:29,740 epoch 5 - iter 462/773 - loss 0.02477722 - time (sec): 27.89 - samples/sec: 2727.07 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-16 22:50:34,296 epoch 5 - iter 539/773 - loss 0.02515718 - time (sec): 32.45 - samples/sec: 2745.77 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-16 22:50:38,637 epoch 5 - iter 616/773 - loss 0.02459067 - time (sec): 36.79 - samples/sec: 2745.62 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-16 22:50:42,904 epoch 5 - iter 693/773 - loss 0.02490799 - time (sec): 41.05 - samples/sec: 2740.82 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-16 22:50:47,140 epoch 5 - iter 770/773 - loss 0.02419246 - time (sec): 45.29 - samples/sec: 2737.34 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-16 22:50:47,290 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:50:47,290 EPOCH 5 done: loss 0.0241 - lr: 0.000028 |
|
2023-10-16 22:50:49,400 DEV : loss 0.10803093016147614 - f1-score (micro avg) 0.7821 |
|
2023-10-16 22:50:49,414 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:50:53,937 epoch 6 - iter 77/773 - loss 0.01084402 - time (sec): 4.52 - samples/sec: 2709.74 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-16 22:50:58,588 epoch 6 - iter 154/773 - loss 0.01565568 - time (sec): 9.17 - samples/sec: 2682.37 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-16 22:51:03,088 epoch 6 - iter 231/773 - loss 0.01799942 - time (sec): 13.67 - samples/sec: 2671.24 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-16 22:51:07,640 epoch 6 - iter 308/773 - loss 0.01771408 - time (sec): 18.22 - samples/sec: 2707.41 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-16 22:51:11,960 epoch 6 - iter 385/773 - loss 0.01871910 - time (sec): 22.54 - samples/sec: 2739.49 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-16 22:51:16,757 epoch 6 - iter 462/773 - loss 0.01928403 - time (sec): 27.34 - samples/sec: 2747.99 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-16 22:51:21,399 epoch 6 - iter 539/773 - loss 0.01888480 - time (sec): 31.98 - samples/sec: 2721.82 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-16 22:51:25,908 epoch 6 - iter 616/773 - loss 0.02050580 - time (sec): 36.49 - samples/sec: 2709.59 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-16 22:51:30,516 epoch 6 - iter 693/773 - loss 0.01943211 - time (sec): 41.10 - samples/sec: 2701.94 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-16 22:51:35,177 epoch 6 - iter 770/773 - loss 0.01958240 - time (sec): 45.76 - samples/sec: 2708.62 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-16 22:51:35,336 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:51:35,337 EPOCH 6 done: loss 0.0196 - lr: 0.000022 |
|
2023-10-16 22:51:37,400 DEV : loss 0.1094818264245987 - f1-score (micro avg) 0.7815 |
|
2023-10-16 22:51:37,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:51:41,880 epoch 7 - iter 77/773 - loss 0.00528052 - time (sec): 4.46 - samples/sec: 2697.30 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-16 22:51:46,322 epoch 7 - iter 154/773 - loss 0.00899972 - time (sec): 8.91 - samples/sec: 2684.24 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-16 22:51:50,741 epoch 7 - iter 231/773 - loss 0.01093330 - time (sec): 13.33 - samples/sec: 2729.67 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-16 22:51:55,196 epoch 7 - iter 308/773 - loss 0.01394532 - time (sec): 17.78 - samples/sec: 2733.90 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-16 22:51:59,811 epoch 7 - iter 385/773 - loss 0.01538091 - time (sec): 22.39 - samples/sec: 2741.05 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-16 22:52:04,408 epoch 7 - iter 462/773 - loss 0.01469576 - time (sec): 26.99 - samples/sec: 2754.87 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-16 22:52:09,001 epoch 7 - iter 539/773 - loss 0.01528889 - time (sec): 31.58 - samples/sec: 2752.79 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-16 22:52:13,667 epoch 7 - iter 616/773 - loss 0.01471401 - time (sec): 36.25 - samples/sec: 2731.80 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-16 22:52:18,014 epoch 7 - iter 693/773 - loss 0.01434424 - time (sec): 40.60 - samples/sec: 2741.98 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-16 22:52:22,595 epoch 7 - iter 770/773 - loss 0.01514214 - time (sec): 45.18 - samples/sec: 2744.16 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-16 22:52:22,749 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:52:22,749 EPOCH 7 done: loss 0.0151 - lr: 0.000017 |
|
2023-10-16 22:52:24,858 DEV : loss 0.10991214215755463 - f1-score (micro avg) 0.7794 |
|
2023-10-16 22:52:24,871 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:52:29,258 epoch 8 - iter 77/773 - loss 0.00333898 - time (sec): 4.39 - samples/sec: 2595.49 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-16 22:52:34,059 epoch 8 - iter 154/773 - loss 0.00641512 - time (sec): 9.19 - samples/sec: 2693.65 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-16 22:52:39,164 epoch 8 - iter 231/773 - loss 0.00625228 - time (sec): 14.29 - samples/sec: 2647.99 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-16 22:52:43,962 epoch 8 - iter 308/773 - loss 0.00659826 - time (sec): 19.09 - samples/sec: 2672.30 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-16 22:52:48,443 epoch 8 - iter 385/773 - loss 0.00711413 - time (sec): 23.57 - samples/sec: 2675.76 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-16 22:52:52,773 epoch 8 - iter 462/773 - loss 0.00795173 - time (sec): 27.90 - samples/sec: 2677.65 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-16 22:52:57,154 epoch 8 - iter 539/773 - loss 0.00841455 - time (sec): 32.28 - samples/sec: 2698.48 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-16 22:53:01,874 epoch 8 - iter 616/773 - loss 0.00849543 - time (sec): 37.00 - samples/sec: 2695.17 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-16 22:53:06,448 epoch 8 - iter 693/773 - loss 0.00897091 - time (sec): 41.58 - samples/sec: 2698.10 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-16 22:53:10,765 epoch 8 - iter 770/773 - loss 0.00880887 - time (sec): 45.89 - samples/sec: 2696.82 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-16 22:53:10,931 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:53:10,931 EPOCH 8 done: loss 0.0088 - lr: 0.000011 |
|
2023-10-16 22:53:13,015 DEV : loss 0.11286821216344833 - f1-score (micro avg) 0.7934 |
|
2023-10-16 22:53:13,029 saving best model |
|
2023-10-16 22:53:13,480 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:53:18,090 epoch 9 - iter 77/773 - loss 0.01038545 - time (sec): 4.60 - samples/sec: 2556.72 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-16 22:53:22,785 epoch 9 - iter 154/773 - loss 0.00653013 - time (sec): 9.29 - samples/sec: 2558.56 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-16 22:53:27,393 epoch 9 - iter 231/773 - loss 0.00606729 - time (sec): 13.90 - samples/sec: 2674.63 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-16 22:53:31,904 epoch 9 - iter 308/773 - loss 0.00657523 - time (sec): 18.41 - samples/sec: 2669.14 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-16 22:53:36,500 epoch 9 - iter 385/773 - loss 0.00675286 - time (sec): 23.01 - samples/sec: 2703.69 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-16 22:53:40,928 epoch 9 - iter 462/773 - loss 0.00630020 - time (sec): 27.44 - samples/sec: 2707.69 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-16 22:53:45,461 epoch 9 - iter 539/773 - loss 0.00593099 - time (sec): 31.97 - samples/sec: 2721.81 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-16 22:53:49,850 epoch 9 - iter 616/773 - loss 0.00631036 - time (sec): 36.36 - samples/sec: 2723.02 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-16 22:53:54,199 epoch 9 - iter 693/773 - loss 0.00613278 - time (sec): 40.71 - samples/sec: 2731.95 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-16 22:53:58,725 epoch 9 - iter 770/773 - loss 0.00617994 - time (sec): 45.23 - samples/sec: 2740.57 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-16 22:53:58,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:53:58,874 EPOCH 9 done: loss 0.0062 - lr: 0.000006 |
|
2023-10-16 22:54:00,998 DEV : loss 0.11028449237346649 - f1-score (micro avg) 0.8092 |
|
2023-10-16 22:54:01,011 saving best model |
|
2023-10-16 22:54:01,454 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:54:05,936 epoch 10 - iter 77/773 - loss 0.00135028 - time (sec): 4.48 - samples/sec: 2727.49 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-16 22:54:10,426 epoch 10 - iter 154/773 - loss 0.00310208 - time (sec): 8.97 - samples/sec: 2771.61 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-16 22:54:14,892 epoch 10 - iter 231/773 - loss 0.00391362 - time (sec): 13.43 - samples/sec: 2768.89 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-16 22:54:19,512 epoch 10 - iter 308/773 - loss 0.00329852 - time (sec): 18.05 - samples/sec: 2754.06 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-16 22:54:23,936 epoch 10 - iter 385/773 - loss 0.00380931 - time (sec): 22.48 - samples/sec: 2768.94 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-16 22:54:28,526 epoch 10 - iter 462/773 - loss 0.00368967 - time (sec): 27.07 - samples/sec: 2765.33 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-16 22:54:33,179 epoch 10 - iter 539/773 - loss 0.00347435 - time (sec): 31.72 - samples/sec: 2740.59 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-16 22:54:37,718 epoch 10 - iter 616/773 - loss 0.00375376 - time (sec): 36.26 - samples/sec: 2740.49 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-16 22:54:42,218 epoch 10 - iter 693/773 - loss 0.00367638 - time (sec): 40.76 - samples/sec: 2737.65 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-16 22:54:46,786 epoch 10 - iter 770/773 - loss 0.00361332 - time (sec): 45.33 - samples/sec: 2734.62 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-16 22:54:46,935 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:54:46,935 EPOCH 10 done: loss 0.0036 - lr: 0.000000 |
|
2023-10-16 22:54:49,087 DEV : loss 0.11204110831022263 - f1-score (micro avg) 0.7975 |
|
2023-10-16 22:54:49,470 ---------------------------------------------------------------------------------------------------- |
|
2023-10-16 22:54:49,471 Loading model from best epoch ... |
|
2023-10-16 22:54:51,168 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET |
|
2023-10-16 22:54:57,525 |
|
Results: |
|
- F-score (micro) 0.8227 |
|
- F-score (macro) 0.7472 |
|
- Accuracy 0.7223 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.8625 0.8552 0.8588 946 |
|
BUILDING 0.6836 0.6541 0.6685 185 |
|
STREET 0.7143 0.7143 0.7143 56 |
|
|
|
micro avg 0.8284 0.8172 0.8227 1187 |
|
macro avg 0.7535 0.7412 0.7472 1187 |
|
weighted avg 0.8276 0.8172 0.8223 1187 |
|
|
|
2023-10-16 22:54:57,525 ---------------------------------------------------------------------------------------------------- |
|
|