Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697748481.46dc0c540dd0.4731.15 +3 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39a64a7db6071a0e3865f02d8627b684b2398d800833f2e1e1f8c57edf60d4a8
|
3 |
+
size 19048098
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:48:25 0.0000 1.2221 0.3181 0.2899 0.0939 0.1418 0.0779
|
3 |
+
2 20:48:50 0.0000 0.4144 0.2430 0.3774 0.4272 0.4008 0.2691
|
4 |
+
3 20:49:16 0.0000 0.3337 0.2154 0.4227 0.4503 0.4361 0.2974
|
5 |
+
4 20:49:41 0.0000 0.2910 0.2039 0.4476 0.4707 0.4589 0.3148
|
6 |
+
5 20:50:06 0.0000 0.2639 0.1942 0.4859 0.5143 0.4997 0.3510
|
7 |
+
6 20:50:31 0.0000 0.2434 0.1893 0.4937 0.5320 0.5121 0.3637
|
8 |
+
7 20:50:57 0.0000 0.2274 0.1883 0.5204 0.5374 0.5288 0.3787
|
9 |
+
8 20:51:22 0.0000 0.2197 0.1870 0.4884 0.5714 0.5266 0.3774
|
10 |
+
9 20:51:47 0.0000 0.2128 0.1849 0.4899 0.5605 0.5228 0.3739
|
11 |
+
10 20:52:13 0.0000 0.2059 0.1856 0.5000 0.5578 0.5273 0.3786
|
runs/events.out.tfevents.1697748481.46dc0c540dd0.4731.15
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46026d7e1bf0d0c198652af8b75ad2a560498afaaa81ad972538848a15c311a5
|
3 |
+
size 502461
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-19 20:48:01,185 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-19 20:48:01,185 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-19 20:48:01,185 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-19 20:48:01,185 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
53 |
+
2023-10-19 20:48:01,185 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-19 20:48:01,185 Train: 7142 sentences
|
55 |
+
2023-10-19 20:48:01,185 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-19 20:48:01,185 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-19 20:48:01,185 Training Params:
|
58 |
+
2023-10-19 20:48:01,186 - learning_rate: "5e-05"
|
59 |
+
2023-10-19 20:48:01,186 - mini_batch_size: "8"
|
60 |
+
2023-10-19 20:48:01,186 - max_epochs: "10"
|
61 |
+
2023-10-19 20:48:01,186 - shuffle: "True"
|
62 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-19 20:48:01,186 Plugins:
|
64 |
+
2023-10-19 20:48:01,186 - TensorboardLogger
|
65 |
+
2023-10-19 20:48:01,186 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-19 20:48:01,186 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-19 20:48:01,186 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-19 20:48:01,186 Computation:
|
71 |
+
2023-10-19 20:48:01,186 - compute on device: cuda:0
|
72 |
+
2023-10-19 20:48:01,186 - embedding storage: none
|
73 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-19 20:48:01,186 Model training base path: "hmbench-newseye/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-19 20:48:01,186 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-19 20:48:01,186 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-19 20:48:03,348 epoch 1 - iter 89/893 - loss 3.31788487 - time (sec): 2.16 - samples/sec: 11311.02 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-19 20:48:05,631 epoch 1 - iter 178/893 - loss 3.00220485 - time (sec): 4.44 - samples/sec: 11232.29 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-19 20:48:07,923 epoch 1 - iter 267/893 - loss 2.52761114 - time (sec): 6.74 - samples/sec: 11190.98 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-19 20:48:10,295 epoch 1 - iter 356/893 - loss 2.08600669 - time (sec): 9.11 - samples/sec: 11235.03 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-19 20:48:12,581 epoch 1 - iter 445/893 - loss 1.83262530 - time (sec): 11.39 - samples/sec: 11102.08 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-19 20:48:15,291 epoch 1 - iter 534/893 - loss 1.65539925 - time (sec): 14.10 - samples/sec: 10637.43 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-19 20:48:17,545 epoch 1 - iter 623/893 - loss 1.51778252 - time (sec): 16.36 - samples/sec: 10597.71 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-19 20:48:19,817 epoch 1 - iter 712/893 - loss 1.39687716 - time (sec): 18.63 - samples/sec: 10637.02 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-19 20:48:22,116 epoch 1 - iter 801/893 - loss 1.30006566 - time (sec): 20.93 - samples/sec: 10682.81 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-19 20:48:24,252 epoch 1 - iter 890/893 - loss 1.22292912 - time (sec): 23.07 - samples/sec: 10766.58 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-19 20:48:24,309 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-19 20:48:24,309 EPOCH 1 done: loss 1.2221 - lr: 0.000050
|
90 |
+
2023-10-19 20:48:25,279 DEV : loss 0.31805744767189026 - f1-score (micro avg) 0.1418
|
91 |
+
2023-10-19 20:48:25,292 saving best model
|
92 |
+
2023-10-19 20:48:25,326 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-19 20:48:27,490 epoch 2 - iter 89/893 - loss 0.44839489 - time (sec): 2.16 - samples/sec: 12092.79 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-19 20:48:29,745 epoch 2 - iter 178/893 - loss 0.45190939 - time (sec): 4.42 - samples/sec: 11426.89 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-19 20:48:32,002 epoch 2 - iter 267/893 - loss 0.43792015 - time (sec): 6.68 - samples/sec: 11102.76 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-19 20:48:34,385 epoch 2 - iter 356/893 - loss 0.43913817 - time (sec): 9.06 - samples/sec: 11081.95 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-19 20:48:36,597 epoch 2 - iter 445/893 - loss 0.42993763 - time (sec): 11.27 - samples/sec: 11119.56 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-19 20:48:38,813 epoch 2 - iter 534/893 - loss 0.43160330 - time (sec): 13.49 - samples/sec: 11151.24 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-19 20:48:41,016 epoch 2 - iter 623/893 - loss 0.42662350 - time (sec): 15.69 - samples/sec: 11100.26 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-19 20:48:43,209 epoch 2 - iter 712/893 - loss 0.42179532 - time (sec): 17.88 - samples/sec: 11134.96 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-19 20:48:45,471 epoch 2 - iter 801/893 - loss 0.41961257 - time (sec): 20.14 - samples/sec: 11127.37 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-19 20:48:47,717 epoch 2 - iter 890/893 - loss 0.41430294 - time (sec): 22.39 - samples/sec: 11086.08 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-19 20:48:47,788 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-19 20:48:47,789 EPOCH 2 done: loss 0.4144 - lr: 0.000044
|
105 |
+
2023-10-19 20:48:50,606 DEV : loss 0.2429792881011963 - f1-score (micro avg) 0.4008
|
106 |
+
2023-10-19 20:48:50,619 saving best model
|
107 |
+
2023-10-19 20:48:50,656 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-19 20:48:52,917 epoch 3 - iter 89/893 - loss 0.34817659 - time (sec): 2.26 - samples/sec: 10227.98 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-19 20:48:55,197 epoch 3 - iter 178/893 - loss 0.34419809 - time (sec): 4.54 - samples/sec: 10597.89 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-19 20:48:57,484 epoch 3 - iter 267/893 - loss 0.34570190 - time (sec): 6.83 - samples/sec: 10723.08 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-19 20:48:59,738 epoch 3 - iter 356/893 - loss 0.35673527 - time (sec): 9.08 - samples/sec: 10912.76 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-19 20:49:01,958 epoch 3 - iter 445/893 - loss 0.35787478 - time (sec): 11.30 - samples/sec: 10929.46 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-19 20:49:04,293 epoch 3 - iter 534/893 - loss 0.34975742 - time (sec): 13.64 - samples/sec: 10906.45 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-19 20:49:06,578 epoch 3 - iter 623/893 - loss 0.34623751 - time (sec): 15.92 - samples/sec: 10910.39 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-19 20:49:08,859 epoch 3 - iter 712/893 - loss 0.34105492 - time (sec): 18.20 - samples/sec: 10933.97 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-19 20:49:11,148 epoch 3 - iter 801/893 - loss 0.33634117 - time (sec): 20.49 - samples/sec: 10927.23 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-19 20:49:13,428 epoch 3 - iter 890/893 - loss 0.33396920 - time (sec): 22.77 - samples/sec: 10869.31 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-19 20:49:13,514 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-19 20:49:13,514 EPOCH 3 done: loss 0.3337 - lr: 0.000039
|
120 |
+
2023-10-19 20:49:16,351 DEV : loss 0.21542218327522278 - f1-score (micro avg) 0.4361
|
121 |
+
2023-10-19 20:49:16,366 saving best model
|
122 |
+
2023-10-19 20:49:16,401 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-19 20:49:18,738 epoch 4 - iter 89/893 - loss 0.30607610 - time (sec): 2.34 - samples/sec: 10539.75 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-19 20:49:21,031 epoch 4 - iter 178/893 - loss 0.30905617 - time (sec): 4.63 - samples/sec: 10680.88 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-19 20:49:23,318 epoch 4 - iter 267/893 - loss 0.29857101 - time (sec): 6.92 - samples/sec: 10720.72 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-19 20:49:25,577 epoch 4 - iter 356/893 - loss 0.29476408 - time (sec): 9.17 - samples/sec: 10783.77 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-19 20:49:27,831 epoch 4 - iter 445/893 - loss 0.29327210 - time (sec): 11.43 - samples/sec: 10831.79 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-19 20:49:30,154 epoch 4 - iter 534/893 - loss 0.29218114 - time (sec): 13.75 - samples/sec: 10873.04 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-19 20:49:32,370 epoch 4 - iter 623/893 - loss 0.29353192 - time (sec): 15.97 - samples/sec: 10834.37 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-19 20:49:34,613 epoch 4 - iter 712/893 - loss 0.29422867 - time (sec): 18.21 - samples/sec: 10899.70 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-19 20:49:36,847 epoch 4 - iter 801/893 - loss 0.29355665 - time (sec): 20.45 - samples/sec: 10841.59 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-19 20:49:39,153 epoch 4 - iter 890/893 - loss 0.29116940 - time (sec): 22.75 - samples/sec: 10896.21 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-19 20:49:39,226 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-19 20:49:39,227 EPOCH 4 done: loss 0.2910 - lr: 0.000033
|
135 |
+
2023-10-19 20:49:41,610 DEV : loss 0.20385973155498505 - f1-score (micro avg) 0.4589
|
136 |
+
2023-10-19 20:49:41,624 saving best model
|
137 |
+
2023-10-19 20:49:41,659 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-19 20:49:43,712 epoch 5 - iter 89/893 - loss 0.25219515 - time (sec): 2.05 - samples/sec: 11876.44 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-19 20:49:45,968 epoch 5 - iter 178/893 - loss 0.26468865 - time (sec): 4.31 - samples/sec: 11290.43 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-19 20:49:48,261 epoch 5 - iter 267/893 - loss 0.27013532 - time (sec): 6.60 - samples/sec: 11053.64 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-19 20:49:50,577 epoch 5 - iter 356/893 - loss 0.26947573 - time (sec): 8.92 - samples/sec: 11028.19 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-19 20:49:52,776 epoch 5 - iter 445/893 - loss 0.27194910 - time (sec): 11.12 - samples/sec: 11145.21 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-19 20:49:54,655 epoch 5 - iter 534/893 - loss 0.26870618 - time (sec): 13.00 - samples/sec: 11451.82 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-19 20:49:56,476 epoch 5 - iter 623/893 - loss 0.26893292 - time (sec): 14.82 - samples/sec: 11703.51 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-19 20:49:58,730 epoch 5 - iter 712/893 - loss 0.26943529 - time (sec): 17.07 - samples/sec: 11640.91 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-19 20:50:01,091 epoch 5 - iter 801/893 - loss 0.26558780 - time (sec): 19.43 - samples/sec: 11484.67 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-19 20:50:03,363 epoch 5 - iter 890/893 - loss 0.26382300 - time (sec): 21.70 - samples/sec: 11422.87 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-19 20:50:03,435 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-19 20:50:03,435 EPOCH 5 done: loss 0.2639 - lr: 0.000028
|
150 |
+
2023-10-19 20:50:06,328 DEV : loss 0.19422198832035065 - f1-score (micro avg) 0.4997
|
151 |
+
2023-10-19 20:50:06,349 saving best model
|
152 |
+
2023-10-19 20:50:06,385 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-19 20:50:08,645 epoch 6 - iter 89/893 - loss 0.24073724 - time (sec): 2.26 - samples/sec: 11025.22 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-19 20:50:10,868 epoch 6 - iter 178/893 - loss 0.23869287 - time (sec): 4.48 - samples/sec: 10742.28 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-19 20:50:13,108 epoch 6 - iter 267/893 - loss 0.23653702 - time (sec): 6.72 - samples/sec: 10700.65 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-19 20:50:15,366 epoch 6 - iter 356/893 - loss 0.23682304 - time (sec): 8.98 - samples/sec: 10740.98 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-19 20:50:17,617 epoch 6 - iter 445/893 - loss 0.23901517 - time (sec): 11.23 - samples/sec: 10742.46 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-19 20:50:19,888 epoch 6 - iter 534/893 - loss 0.24103990 - time (sec): 13.50 - samples/sec: 10774.77 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-19 20:50:22,139 epoch 6 - iter 623/893 - loss 0.24250770 - time (sec): 15.75 - samples/sec: 10852.32 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-19 20:50:24,407 epoch 6 - iter 712/893 - loss 0.24499793 - time (sec): 18.02 - samples/sec: 10936.70 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-19 20:50:26,664 epoch 6 - iter 801/893 - loss 0.24412070 - time (sec): 20.28 - samples/sec: 10977.66 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-19 20:50:28,983 epoch 6 - iter 890/893 - loss 0.24378175 - time (sec): 22.60 - samples/sec: 10963.58 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-19 20:50:29,062 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-19 20:50:29,062 EPOCH 6 done: loss 0.2434 - lr: 0.000022
|
165 |
+
2023-10-19 20:50:31,413 DEV : loss 0.1892632693052292 - f1-score (micro avg) 0.5121
|
166 |
+
2023-10-19 20:50:31,426 saving best model
|
167 |
+
2023-10-19 20:50:31,462 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-19 20:50:34,181 epoch 7 - iter 89/893 - loss 0.21102632 - time (sec): 2.72 - samples/sec: 8398.67 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-19 20:50:36,427 epoch 7 - iter 178/893 - loss 0.22949609 - time (sec): 4.96 - samples/sec: 9490.59 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-19 20:50:38,659 epoch 7 - iter 267/893 - loss 0.22714217 - time (sec): 7.20 - samples/sec: 10067.28 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-19 20:50:40,892 epoch 7 - iter 356/893 - loss 0.22411998 - time (sec): 9.43 - samples/sec: 10212.94 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-19 20:50:43,256 epoch 7 - iter 445/893 - loss 0.22268983 - time (sec): 11.79 - samples/sec: 10343.03 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-19 20:50:45,358 epoch 7 - iter 534/893 - loss 0.22316819 - time (sec): 13.90 - samples/sec: 10467.56 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-19 20:50:47,671 epoch 7 - iter 623/893 - loss 0.22564912 - time (sec): 16.21 - samples/sec: 10384.21 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-19 20:50:50,031 epoch 7 - iter 712/893 - loss 0.22635014 - time (sec): 18.57 - samples/sec: 10611.04 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-19 20:50:52,321 epoch 7 - iter 801/893 - loss 0.22691152 - time (sec): 20.86 - samples/sec: 10735.21 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-19 20:50:54,568 epoch 7 - iter 890/893 - loss 0.22770015 - time (sec): 23.10 - samples/sec: 10734.74 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-19 20:50:54,639 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-19 20:50:54,639 EPOCH 7 done: loss 0.2274 - lr: 0.000017
|
180 |
+
2023-10-19 20:50:56,997 DEV : loss 0.18830116093158722 - f1-score (micro avg) 0.5288
|
181 |
+
2023-10-19 20:50:57,012 saving best model
|
182 |
+
2023-10-19 20:50:57,045 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-19 20:50:59,273 epoch 8 - iter 89/893 - loss 0.19916108 - time (sec): 2.23 - samples/sec: 10591.83 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-19 20:51:01,665 epoch 8 - iter 178/893 - loss 0.21119586 - time (sec): 4.62 - samples/sec: 10765.32 - lr: 0.000016 - momentum: 0.000000
|
185 |
+
2023-10-19 20:51:03,984 epoch 8 - iter 267/893 - loss 0.21979280 - time (sec): 6.94 - samples/sec: 10695.84 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-19 20:51:06,299 epoch 8 - iter 356/893 - loss 0.21652746 - time (sec): 9.25 - samples/sec: 10710.65 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-19 20:51:08,560 epoch 8 - iter 445/893 - loss 0.22339324 - time (sec): 11.51 - samples/sec: 10656.55 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-19 20:51:10,778 epoch 8 - iter 534/893 - loss 0.22339473 - time (sec): 13.73 - samples/sec: 10739.10 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-19 20:51:13,062 epoch 8 - iter 623/893 - loss 0.22183591 - time (sec): 16.02 - samples/sec: 10697.70 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-19 20:51:15,299 epoch 8 - iter 712/893 - loss 0.21960297 - time (sec): 18.25 - samples/sec: 10714.14 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-19 20:51:17,631 epoch 8 - iter 801/893 - loss 0.22015520 - time (sec): 20.59 - samples/sec: 10823.07 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-19 20:51:19,875 epoch 8 - iter 890/893 - loss 0.21912504 - time (sec): 22.83 - samples/sec: 10865.83 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-19 20:51:19,943 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-19 20:51:19,943 EPOCH 8 done: loss 0.2197 - lr: 0.000011
|
195 |
+
2023-10-19 20:51:22,761 DEV : loss 0.18704333901405334 - f1-score (micro avg) 0.5266
|
196 |
+
2023-10-19 20:51:22,774 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-19 20:51:25,008 epoch 9 - iter 89/893 - loss 0.22409608 - time (sec): 2.23 - samples/sec: 10905.75 - lr: 0.000011 - momentum: 0.000000
|
198 |
+
2023-10-19 20:51:27,275 epoch 9 - iter 178/893 - loss 0.21545283 - time (sec): 4.50 - samples/sec: 10899.19 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-19 20:51:29,461 epoch 9 - iter 267/893 - loss 0.22001584 - time (sec): 6.69 - samples/sec: 10951.22 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-19 20:51:31,753 epoch 9 - iter 356/893 - loss 0.22377309 - time (sec): 8.98 - samples/sec: 10998.28 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-19 20:51:34,036 epoch 9 - iter 445/893 - loss 0.22189321 - time (sec): 11.26 - samples/sec: 11162.57 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-19 20:51:36,280 epoch 9 - iter 534/893 - loss 0.21704728 - time (sec): 13.50 - samples/sec: 11064.48 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-19 20:51:38,531 epoch 9 - iter 623/893 - loss 0.21551115 - time (sec): 15.76 - samples/sec: 11080.72 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-19 20:51:40,762 epoch 9 - iter 712/893 - loss 0.21465534 - time (sec): 17.99 - samples/sec: 11037.93 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-19 20:51:43,131 epoch 9 - iter 801/893 - loss 0.21346279 - time (sec): 20.36 - samples/sec: 10987.62 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-19 20:51:45,480 epoch 9 - iter 890/893 - loss 0.21290729 - time (sec): 22.70 - samples/sec: 10917.64 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-19 20:51:45,552 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-19 20:51:45,552 EPOCH 9 done: loss 0.2128 - lr: 0.000006
|
209 |
+
2023-10-19 20:51:47,908 DEV : loss 0.18491902947425842 - f1-score (micro avg) 0.5228
|
210 |
+
2023-10-19 20:51:47,922 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-19 20:51:50,065 epoch 10 - iter 89/893 - loss 0.19783421 - time (sec): 2.14 - samples/sec: 12237.43 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-19 20:51:52,362 epoch 10 - iter 178/893 - loss 0.19939993 - time (sec): 4.44 - samples/sec: 11666.48 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-19 20:51:55,147 epoch 10 - iter 267/893 - loss 0.20297035 - time (sec): 7.22 - samples/sec: 10795.24 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-19 20:51:57,423 epoch 10 - iter 356/893 - loss 0.20510717 - time (sec): 9.50 - samples/sec: 10783.91 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-19 20:51:59,726 epoch 10 - iter 445/893 - loss 0.20467266 - time (sec): 11.80 - samples/sec: 10781.26 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-19 20:52:01,947 epoch 10 - iter 534/893 - loss 0.20537293 - time (sec): 14.02 - samples/sec: 10806.69 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-19 20:52:04,321 epoch 10 - iter 623/893 - loss 0.20318246 - time (sec): 16.40 - samples/sec: 10731.05 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-19 20:52:06,590 epoch 10 - iter 712/893 - loss 0.20334880 - time (sec): 18.67 - samples/sec: 10705.27 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-19 20:52:08,869 epoch 10 - iter 801/893 - loss 0.20499649 - time (sec): 20.95 - samples/sec: 10675.00 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-19 20:52:11,144 epoch 10 - iter 890/893 - loss 0.20573355 - time (sec): 23.22 - samples/sec: 10664.10 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-19 20:52:11,215 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-19 20:52:11,215 EPOCH 10 done: loss 0.2059 - lr: 0.000000
|
223 |
+
2023-10-19 20:52:13,598 DEV : loss 0.18561328947544098 - f1-score (micro avg) 0.5273
|
224 |
+
2023-10-19 20:52:13,641 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-19 20:52:13,642 Loading model from best epoch ...
|
226 |
+
2023-10-19 20:52:13,719 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
227 |
+
2023-10-19 20:52:18,262
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.4184
|
230 |
+
- F-score (macro) 0.256
|
231 |
+
- Accuracy 0.2729
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
LOC 0.4267 0.4968 0.4591 1095
|
237 |
+
PER 0.4579 0.4733 0.4655 1012
|
238 |
+
ORG 0.1359 0.0784 0.0995 357
|
239 |
+
HumanProd 0.0000 0.0000 0.0000 33
|
240 |
+
|
241 |
+
micro avg 0.4159 0.4209 0.4184 2497
|
242 |
+
macro avg 0.2551 0.2621 0.2560 2497
|
243 |
+
weighted avg 0.3921 0.4209 0.4042 2497
|
244 |
+
|
245 |
+
2023-10-19 20:52:18,262 ----------------------------------------------------------------------------------------------------
|