Upload ./training.log with huggingface_hub
Browse files- training.log +245 -0
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 16:14:52,812 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 16:14:52,813 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 16:14:52,814 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 16:14:52,814 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
53 |
+
2023-10-25 16:14:52,814 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 16:14:52,814 Train: 7142 sentences
|
55 |
+
2023-10-25 16:14:52,814 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 16:14:52,814 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 16:14:52,814 Training Params:
|
58 |
+
2023-10-25 16:14:52,814 - learning_rate: "5e-05"
|
59 |
+
2023-10-25 16:14:52,814 - mini_batch_size: "8"
|
60 |
+
2023-10-25 16:14:52,815 - max_epochs: "10"
|
61 |
+
2023-10-25 16:14:52,815 - shuffle: "True"
|
62 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 16:14:52,815 Plugins:
|
64 |
+
2023-10-25 16:14:52,815 - TensorboardLogger
|
65 |
+
2023-10-25 16:14:52,815 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 16:14:52,815 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 16:14:52,815 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 16:14:52,815 Computation:
|
71 |
+
2023-10-25 16:14:52,815 - compute on device: cuda:0
|
72 |
+
2023-10-25 16:14:52,815 - embedding storage: none
|
73 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 16:14:52,815 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
75 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 16:14:52,815 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 16:14:52,815 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 16:14:58,476 epoch 1 - iter 89/893 - loss 1.75249226 - time (sec): 5.66 - samples/sec: 4225.04 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-25 16:15:04,047 epoch 1 - iter 178/893 - loss 1.12358214 - time (sec): 11.23 - samples/sec: 4331.58 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-25 16:15:09,631 epoch 1 - iter 267/893 - loss 0.85862892 - time (sec): 16.81 - samples/sec: 4346.69 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-25 16:15:15,653 epoch 1 - iter 356/893 - loss 0.68950207 - time (sec): 22.84 - samples/sec: 4359.93 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-25 16:15:21,583 epoch 1 - iter 445/893 - loss 0.59145739 - time (sec): 28.77 - samples/sec: 4287.67 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-25 16:15:27,239 epoch 1 - iter 534/893 - loss 0.52114142 - time (sec): 34.42 - samples/sec: 4306.58 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-25 16:15:32,900 epoch 1 - iter 623/893 - loss 0.46529929 - time (sec): 40.08 - samples/sec: 4352.66 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-25 16:15:38,561 epoch 1 - iter 712/893 - loss 0.42604012 - time (sec): 45.75 - samples/sec: 4351.79 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-25 16:15:44,304 epoch 1 - iter 801/893 - loss 0.39523829 - time (sec): 51.49 - samples/sec: 4338.77 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-25 16:15:49,757 epoch 1 - iter 890/893 - loss 0.37145848 - time (sec): 56.94 - samples/sec: 4358.82 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-25 16:15:49,923 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 16:15:49,923 EPOCH 1 done: loss 0.3708 - lr: 0.000050
|
90 |
+
2023-10-25 16:15:53,793 DEV : loss 0.11669864505529404 - f1-score (micro avg) 0.7017
|
91 |
+
2023-10-25 16:15:53,817 saving best model
|
92 |
+
2023-10-25 16:15:54,256 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 16:16:00,060 epoch 2 - iter 89/893 - loss 0.09474515 - time (sec): 5.80 - samples/sec: 4339.83 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-25 16:16:05,594 epoch 2 - iter 178/893 - loss 0.10318396 - time (sec): 11.34 - samples/sec: 4160.10 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-25 16:16:11,390 epoch 2 - iter 267/893 - loss 0.10509808 - time (sec): 17.13 - samples/sec: 4224.80 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-25 16:16:17,233 epoch 2 - iter 356/893 - loss 0.10228761 - time (sec): 22.97 - samples/sec: 4354.62 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-25 16:16:22,957 epoch 2 - iter 445/893 - loss 0.10257400 - time (sec): 28.70 - samples/sec: 4341.65 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-25 16:16:28,542 epoch 2 - iter 534/893 - loss 0.10603402 - time (sec): 34.28 - samples/sec: 4337.53 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-25 16:16:34,303 epoch 2 - iter 623/893 - loss 0.10506118 - time (sec): 40.05 - samples/sec: 4338.75 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-25 16:16:39,929 epoch 2 - iter 712/893 - loss 0.10425592 - time (sec): 45.67 - samples/sec: 4328.82 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-25 16:16:45,809 epoch 2 - iter 801/893 - loss 0.10345125 - time (sec): 51.55 - samples/sec: 4331.43 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-25 16:16:51,516 epoch 2 - iter 890/893 - loss 0.10408064 - time (sec): 57.26 - samples/sec: 4330.98 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-25 16:16:51,691 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 16:16:51,692 EPOCH 2 done: loss 0.1040 - lr: 0.000044
|
105 |
+
2023-10-25 16:16:55,679 DEV : loss 0.10159432888031006 - f1-score (micro avg) 0.7568
|
106 |
+
2023-10-25 16:16:55,697 saving best model
|
107 |
+
2023-10-25 16:16:56,349 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 16:17:01,901 epoch 3 - iter 89/893 - loss 0.06874626 - time (sec): 5.55 - samples/sec: 4285.04 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-25 16:17:07,545 epoch 3 - iter 178/893 - loss 0.06298047 - time (sec): 11.19 - samples/sec: 4308.04 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-25 16:17:12,918 epoch 3 - iter 267/893 - loss 0.06537415 - time (sec): 16.57 - samples/sec: 4389.94 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-25 16:17:18,386 epoch 3 - iter 356/893 - loss 0.06543963 - time (sec): 22.03 - samples/sec: 4360.35 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-25 16:17:23,822 epoch 3 - iter 445/893 - loss 0.06548496 - time (sec): 27.47 - samples/sec: 4365.39 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-25 16:17:29,478 epoch 3 - iter 534/893 - loss 0.06655645 - time (sec): 33.13 - samples/sec: 4387.73 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-25 16:17:35,152 epoch 3 - iter 623/893 - loss 0.06423904 - time (sec): 38.80 - samples/sec: 4396.78 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-25 16:17:41,870 epoch 3 - iter 712/893 - loss 0.06350497 - time (sec): 45.52 - samples/sec: 4335.38 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-25 16:17:47,437 epoch 3 - iter 801/893 - loss 0.06463976 - time (sec): 51.09 - samples/sec: 4361.36 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-25 16:17:52,859 epoch 3 - iter 890/893 - loss 0.06360620 - time (sec): 56.51 - samples/sec: 4387.69 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-25 16:17:53,023 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 16:17:53,024 EPOCH 3 done: loss 0.0636 - lr: 0.000039
|
120 |
+
2023-10-25 16:17:57,577 DEV : loss 0.12474026530981064 - f1-score (micro avg) 0.7885
|
121 |
+
2023-10-25 16:17:57,598 saving best model
|
122 |
+
2023-10-25 16:17:58,246 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 16:18:03,755 epoch 4 - iter 89/893 - loss 0.04272137 - time (sec): 5.51 - samples/sec: 4315.01 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-25 16:18:09,537 epoch 4 - iter 178/893 - loss 0.04287044 - time (sec): 11.29 - samples/sec: 4269.15 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-25 16:18:15,017 epoch 4 - iter 267/893 - loss 0.04645572 - time (sec): 16.77 - samples/sec: 4258.22 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-25 16:18:20,857 epoch 4 - iter 356/893 - loss 0.04425794 - time (sec): 22.61 - samples/sec: 4315.23 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-25 16:18:26,448 epoch 4 - iter 445/893 - loss 0.04423257 - time (sec): 28.20 - samples/sec: 4314.59 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-25 16:18:32,383 epoch 4 - iter 534/893 - loss 0.04415217 - time (sec): 34.14 - samples/sec: 4309.21 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-25 16:18:38,252 epoch 4 - iter 623/893 - loss 0.04351186 - time (sec): 40.00 - samples/sec: 4308.17 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-25 16:18:44,167 epoch 4 - iter 712/893 - loss 0.04498748 - time (sec): 45.92 - samples/sec: 4323.66 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-25 16:18:50,010 epoch 4 - iter 801/893 - loss 0.04527081 - time (sec): 51.76 - samples/sec: 4300.32 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-25 16:18:55,870 epoch 4 - iter 890/893 - loss 0.04646286 - time (sec): 57.62 - samples/sec: 4307.11 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-25 16:18:56,037 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 16:18:56,037 EPOCH 4 done: loss 0.0466 - lr: 0.000033
|
135 |
+
2023-10-25 16:19:00,739 DEV : loss 0.14563852548599243 - f1-score (micro avg) 0.7995
|
136 |
+
2023-10-25 16:19:00,759 saving best model
|
137 |
+
2023-10-25 16:19:01,394 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-25 16:19:07,059 epoch 5 - iter 89/893 - loss 0.03479555 - time (sec): 5.66 - samples/sec: 4283.20 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-25 16:19:12,717 epoch 5 - iter 178/893 - loss 0.03717067 - time (sec): 11.32 - samples/sec: 4246.28 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-25 16:19:18,650 epoch 5 - iter 267/893 - loss 0.03548914 - time (sec): 17.25 - samples/sec: 4224.53 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-25 16:19:24,459 epoch 5 - iter 356/893 - loss 0.03481599 - time (sec): 23.06 - samples/sec: 4207.93 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-25 16:19:30,023 epoch 5 - iter 445/893 - loss 0.03447645 - time (sec): 28.63 - samples/sec: 4210.77 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-25 16:19:35,602 epoch 5 - iter 534/893 - loss 0.03423318 - time (sec): 34.20 - samples/sec: 4226.86 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-25 16:19:41,616 epoch 5 - iter 623/893 - loss 0.03457306 - time (sec): 40.22 - samples/sec: 4242.80 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-25 16:19:47,303 epoch 5 - iter 712/893 - loss 0.03473284 - time (sec): 45.91 - samples/sec: 4253.72 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-25 16:19:53,078 epoch 5 - iter 801/893 - loss 0.03473047 - time (sec): 51.68 - samples/sec: 4308.69 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-25 16:19:58,731 epoch 5 - iter 890/893 - loss 0.03463942 - time (sec): 57.33 - samples/sec: 4328.07 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-25 16:19:58,905 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-25 16:19:58,905 EPOCH 5 done: loss 0.0348 - lr: 0.000028
|
150 |
+
2023-10-25 16:20:03,118 DEV : loss 0.15929269790649414 - f1-score (micro avg) 0.8035
|
151 |
+
2023-10-25 16:20:03,139 saving best model
|
152 |
+
2023-10-25 16:20:03,805 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-25 16:20:10,697 epoch 6 - iter 89/893 - loss 0.02332392 - time (sec): 6.89 - samples/sec: 3453.26 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-25 16:20:16,378 epoch 6 - iter 178/893 - loss 0.02637640 - time (sec): 12.57 - samples/sec: 3883.46 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-25 16:20:22,209 epoch 6 - iter 267/893 - loss 0.02903353 - time (sec): 18.40 - samples/sec: 3994.50 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-25 16:20:28,018 epoch 6 - iter 356/893 - loss 0.02755762 - time (sec): 24.21 - samples/sec: 4059.55 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-25 16:20:34,069 epoch 6 - iter 445/893 - loss 0.02857473 - time (sec): 30.26 - samples/sec: 4082.88 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-25 16:20:39,839 epoch 6 - iter 534/893 - loss 0.02933559 - time (sec): 36.03 - samples/sec: 4102.15 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-25 16:20:45,844 epoch 6 - iter 623/893 - loss 0.02930823 - time (sec): 42.04 - samples/sec: 4110.00 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-25 16:20:51,845 epoch 6 - iter 712/893 - loss 0.02914794 - time (sec): 48.04 - samples/sec: 4138.01 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-25 16:20:57,419 epoch 6 - iter 801/893 - loss 0.02846516 - time (sec): 53.61 - samples/sec: 4158.83 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-25 16:21:03,414 epoch 6 - iter 890/893 - loss 0.02806324 - time (sec): 59.61 - samples/sec: 4161.26 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-25 16:21:03,591 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-25 16:21:03,592 EPOCH 6 done: loss 0.0281 - lr: 0.000022
|
165 |
+
2023-10-25 16:21:07,987 DEV : loss 0.17629361152648926 - f1-score (micro avg) 0.8051
|
166 |
+
2023-10-25 16:21:08,011 saving best model
|
167 |
+
2023-10-25 16:21:08,670 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-25 16:21:14,665 epoch 7 - iter 89/893 - loss 0.01807935 - time (sec): 5.99 - samples/sec: 4333.48 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-25 16:21:20,552 epoch 7 - iter 178/893 - loss 0.01702157 - time (sec): 11.88 - samples/sec: 4331.32 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-25 16:21:26,365 epoch 7 - iter 267/893 - loss 0.01856450 - time (sec): 17.69 - samples/sec: 4348.20 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-25 16:21:31,968 epoch 7 - iter 356/893 - loss 0.01843919 - time (sec): 23.30 - samples/sec: 4380.43 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-25 16:21:37,680 epoch 7 - iter 445/893 - loss 0.01921349 - time (sec): 29.01 - samples/sec: 4339.81 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-25 16:21:43,467 epoch 7 - iter 534/893 - loss 0.01975706 - time (sec): 34.79 - samples/sec: 4351.56 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-25 16:21:49,103 epoch 7 - iter 623/893 - loss 0.01986136 - time (sec): 40.43 - samples/sec: 4335.92 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-25 16:21:54,799 epoch 7 - iter 712/893 - loss 0.01928109 - time (sec): 46.13 - samples/sec: 4326.33 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-25 16:22:00,710 epoch 7 - iter 801/893 - loss 0.01923095 - time (sec): 52.04 - samples/sec: 4317.89 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-25 16:22:06,598 epoch 7 - iter 890/893 - loss 0.01918290 - time (sec): 57.92 - samples/sec: 4282.24 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-25 16:22:06,777 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-25 16:22:06,777 EPOCH 7 done: loss 0.0192 - lr: 0.000017
|
180 |
+
2023-10-25 16:22:11,585 DEV : loss 0.19473356008529663 - f1-score (micro avg) 0.8021
|
181 |
+
2023-10-25 16:22:11,607 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-25 16:22:17,531 epoch 8 - iter 89/893 - loss 0.01959540 - time (sec): 5.92 - samples/sec: 4201.88 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-25 16:22:23,194 epoch 8 - iter 178/893 - loss 0.01512738 - time (sec): 11.59 - samples/sec: 4143.22 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-25 16:22:29,327 epoch 8 - iter 267/893 - loss 0.01384824 - time (sec): 17.72 - samples/sec: 4215.90 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-25 16:22:35,277 epoch 8 - iter 356/893 - loss 0.01370296 - time (sec): 23.67 - samples/sec: 4183.57 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-25 16:22:41,312 epoch 8 - iter 445/893 - loss 0.01389069 - time (sec): 29.70 - samples/sec: 4172.18 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-25 16:22:47,286 epoch 8 - iter 534/893 - loss 0.01477066 - time (sec): 35.68 - samples/sec: 4207.64 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-25 16:22:53,170 epoch 8 - iter 623/893 - loss 0.01437157 - time (sec): 41.56 - samples/sec: 4202.76 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-25 16:22:59,064 epoch 8 - iter 712/893 - loss 0.01397568 - time (sec): 47.45 - samples/sec: 4207.65 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-25 16:23:04,767 epoch 8 - iter 801/893 - loss 0.01390187 - time (sec): 53.16 - samples/sec: 4197.45 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-25 16:23:10,581 epoch 8 - iter 890/893 - loss 0.01427908 - time (sec): 58.97 - samples/sec: 4205.45 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-25 16:23:10,755 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-25 16:23:10,756 EPOCH 8 done: loss 0.0143 - lr: 0.000011
|
194 |
+
2023-10-25 16:23:15,803 DEV : loss 0.1920691877603531 - f1-score (micro avg) 0.8
|
195 |
+
2023-10-25 16:23:15,826 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-25 16:23:21,740 epoch 9 - iter 89/893 - loss 0.00910264 - time (sec): 5.91 - samples/sec: 4529.19 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-25 16:23:27,673 epoch 9 - iter 178/893 - loss 0.01115266 - time (sec): 11.85 - samples/sec: 4385.76 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-25 16:23:33,568 epoch 9 - iter 267/893 - loss 0.00963172 - time (sec): 17.74 - samples/sec: 4396.12 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-25 16:23:39,305 epoch 9 - iter 356/893 - loss 0.00981929 - time (sec): 23.48 - samples/sec: 4312.64 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-25 16:23:44,931 epoch 9 - iter 445/893 - loss 0.01013183 - time (sec): 29.10 - samples/sec: 4248.67 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-25 16:23:50,521 epoch 9 - iter 534/893 - loss 0.01006792 - time (sec): 34.69 - samples/sec: 4230.50 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-25 16:23:56,224 epoch 9 - iter 623/893 - loss 0.00966847 - time (sec): 40.40 - samples/sec: 4263.72 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-25 16:24:01,897 epoch 9 - iter 712/893 - loss 0.00963917 - time (sec): 46.07 - samples/sec: 4278.88 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-25 16:24:07,419 epoch 9 - iter 801/893 - loss 0.00953469 - time (sec): 51.59 - samples/sec: 4291.48 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-25 16:24:13,382 epoch 9 - iter 890/893 - loss 0.00931090 - time (sec): 57.55 - samples/sec: 4310.21 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-25 16:24:13,561 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-25 16:24:13,562 EPOCH 9 done: loss 0.0093 - lr: 0.000006
|
208 |
+
2023-10-25 16:24:17,665 DEV : loss 0.21395151317119598 - f1-score (micro avg) 0.7989
|
209 |
+
2023-10-25 16:24:17,686 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-25 16:24:23,693 epoch 10 - iter 89/893 - loss 0.00447968 - time (sec): 6.01 - samples/sec: 4352.32 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-25 16:24:29,482 epoch 10 - iter 178/893 - loss 0.00644700 - time (sec): 11.79 - samples/sec: 4259.83 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-10-25 16:24:35,198 epoch 10 - iter 267/893 - loss 0.00651104 - time (sec): 17.51 - samples/sec: 4319.85 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-25 16:24:41,020 epoch 10 - iter 356/893 - loss 0.00686979 - time (sec): 23.33 - samples/sec: 4260.72 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-25 16:24:46,929 epoch 10 - iter 445/893 - loss 0.00690950 - time (sec): 29.24 - samples/sec: 4227.17 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-25 16:24:52,949 epoch 10 - iter 534/893 - loss 0.00654009 - time (sec): 35.26 - samples/sec: 4238.85 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-25 16:24:58,798 epoch 10 - iter 623/893 - loss 0.00647660 - time (sec): 41.11 - samples/sec: 4261.62 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-25 16:25:04,630 epoch 10 - iter 712/893 - loss 0.00632372 - time (sec): 46.94 - samples/sec: 4262.36 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-25 16:25:10,334 epoch 10 - iter 801/893 - loss 0.00654215 - time (sec): 52.65 - samples/sec: 4249.10 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-25 16:25:16,167 epoch 10 - iter 890/893 - loss 0.00615978 - time (sec): 58.48 - samples/sec: 4245.00 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-25 16:25:16,341 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-25 16:25:16,341 EPOCH 10 done: loss 0.0061 - lr: 0.000000
|
222 |
+
2023-10-25 16:25:21,059 DEV : loss 0.2173573076725006 - f1-score (micro avg) 0.8064
|
223 |
+
2023-10-25 16:25:21,080 saving best model
|
224 |
+
2023-10-25 16:25:22,110 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-25 16:25:22,112 Loading model from best epoch ...
|
226 |
+
2023-10-25 16:25:23,975 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
227 |
+
2023-10-25 16:25:36,200
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.6851
|
230 |
+
- F-score (macro) 0.6194
|
231 |
+
- Accuracy 0.537
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
LOC 0.6678 0.6941 0.6807 1095
|
237 |
+
PER 0.7727 0.7658 0.7692 1012
|
238 |
+
ORG 0.4590 0.5490 0.5000 357
|
239 |
+
HumanProd 0.4138 0.7273 0.5275 33
|
240 |
+
|
241 |
+
micro avg 0.6683 0.7028 0.6851 2497
|
242 |
+
macro avg 0.5783 0.6840 0.6194 2497
|
243 |
+
weighted avg 0.6771 0.7028 0.6887 2497
|
244 |
+
|
245 |
+
2023-10-25 16:25:36,200 ----------------------------------------------------------------------------------------------------
|