Upload ./training.log with huggingface_hub
Browse files- training.log +245 -0
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 14:50:02,212 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 14:50:02,212 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 14:50:02,213 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 14:50:02,213 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
53 |
+
2023-10-25 14:50:02,213 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 14:50:02,213 Train: 7142 sentences
|
55 |
+
2023-10-25 14:50:02,213 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 14:50:02,213 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 14:50:02,213 Training Params:
|
58 |
+
2023-10-25 14:50:02,213 - learning_rate: "5e-05"
|
59 |
+
2023-10-25 14:50:02,213 - mini_batch_size: "4"
|
60 |
+
2023-10-25 14:50:02,213 - max_epochs: "10"
|
61 |
+
2023-10-25 14:50:02,213 - shuffle: "True"
|
62 |
+
2023-10-25 14:50:02,213 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 14:50:02,213 Plugins:
|
64 |
+
2023-10-25 14:50:02,213 - TensorboardLogger
|
65 |
+
2023-10-25 14:50:02,213 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 14:50:02,213 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 14:50:02,213 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 14:50:02,214 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 14:50:02,214 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 14:50:02,214 Computation:
|
71 |
+
2023-10-25 14:50:02,214 - compute on device: cuda:0
|
72 |
+
2023-10-25 14:50:02,214 - embedding storage: none
|
73 |
+
2023-10-25 14:50:02,214 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 14:50:02,214 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-25 14:50:02,214 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 14:50:02,214 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 14:50:02,214 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 14:50:11,883 epoch 1 - iter 178/1786 - loss 1.84783869 - time (sec): 9.67 - samples/sec: 2583.61 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-25 14:50:21,608 epoch 1 - iter 356/1786 - loss 1.11625612 - time (sec): 19.39 - samples/sec: 2603.59 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-25 14:50:31,390 epoch 1 - iter 534/1786 - loss 0.83906654 - time (sec): 29.18 - samples/sec: 2568.92 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-25 14:50:40,838 epoch 1 - iter 712/1786 - loss 0.68032105 - time (sec): 38.62 - samples/sec: 2597.39 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-25 14:50:50,185 epoch 1 - iter 890/1786 - loss 0.58377808 - time (sec): 47.97 - samples/sec: 2608.11 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-25 14:50:59,347 epoch 1 - iter 1068/1786 - loss 0.51796911 - time (sec): 57.13 - samples/sec: 2609.43 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-25 14:51:08,975 epoch 1 - iter 1246/1786 - loss 0.46226937 - time (sec): 66.76 - samples/sec: 2625.70 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-25 14:51:18,683 epoch 1 - iter 1424/1786 - loss 0.42498520 - time (sec): 76.47 - samples/sec: 2601.98 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-25 14:51:27,888 epoch 1 - iter 1602/1786 - loss 0.39393828 - time (sec): 85.67 - samples/sec: 2609.03 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-25 14:51:37,261 epoch 1 - iter 1780/1786 - loss 0.37225174 - time (sec): 95.05 - samples/sec: 2607.72 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-25 14:51:37,609 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 14:51:37,610 EPOCH 1 done: loss 0.3712 - lr: 0.000050
|
90 |
+
2023-10-25 14:51:41,345 DEV : loss 0.12383320182561874 - f1-score (micro avg) 0.692
|
91 |
+
2023-10-25 14:51:41,367 saving best model
|
92 |
+
2023-10-25 14:51:41,834 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 14:51:50,898 epoch 2 - iter 178/1786 - loss 0.11440561 - time (sec): 9.06 - samples/sec: 2722.95 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-25 14:51:59,829 epoch 2 - iter 356/1786 - loss 0.12055337 - time (sec): 17.99 - samples/sec: 2748.37 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-25 14:52:09,589 epoch 2 - iter 534/1786 - loss 0.12495791 - time (sec): 27.75 - samples/sec: 2647.01 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-25 14:52:19,211 epoch 2 - iter 712/1786 - loss 0.12559829 - time (sec): 37.38 - samples/sec: 2624.13 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-25 14:52:28,850 epoch 2 - iter 890/1786 - loss 0.11968865 - time (sec): 47.01 - samples/sec: 2603.47 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-25 14:52:38,347 epoch 2 - iter 1068/1786 - loss 0.12384761 - time (sec): 56.51 - samples/sec: 2593.27 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-25 14:52:47,363 epoch 2 - iter 1246/1786 - loss 0.12564491 - time (sec): 65.53 - samples/sec: 2626.45 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-25 14:52:56,330 epoch 2 - iter 1424/1786 - loss 0.12415748 - time (sec): 74.50 - samples/sec: 2659.00 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-25 14:53:05,248 epoch 2 - iter 1602/1786 - loss 0.12176852 - time (sec): 83.41 - samples/sec: 2685.88 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-25 14:53:14,581 epoch 2 - iter 1780/1786 - loss 0.12143837 - time (sec): 92.75 - samples/sec: 2672.87 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-25 14:53:14,882 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 14:53:14,883 EPOCH 2 done: loss 0.1213 - lr: 0.000044
|
105 |
+
2023-10-25 14:53:20,002 DEV : loss 0.15896384418010712 - f1-score (micro avg) 0.7482
|
106 |
+
2023-10-25 14:53:20,025 saving best model
|
107 |
+
2023-10-25 14:53:20,700 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 14:53:29,708 epoch 3 - iter 178/1786 - loss 0.07747975 - time (sec): 9.01 - samples/sec: 2728.60 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-25 14:53:39,305 epoch 3 - iter 356/1786 - loss 0.08659897 - time (sec): 18.60 - samples/sec: 2753.37 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-25 14:53:48,734 epoch 3 - iter 534/1786 - loss 0.08333401 - time (sec): 28.03 - samples/sec: 2690.93 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-25 14:53:58,266 epoch 3 - iter 712/1786 - loss 0.08421054 - time (sec): 37.56 - samples/sec: 2649.55 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-25 14:54:07,433 epoch 3 - iter 890/1786 - loss 0.08466478 - time (sec): 46.73 - samples/sec: 2634.36 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-25 14:54:16,555 epoch 3 - iter 1068/1786 - loss 0.08490863 - time (sec): 55.85 - samples/sec: 2649.10 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-25 14:54:25,902 epoch 3 - iter 1246/1786 - loss 0.08422222 - time (sec): 65.20 - samples/sec: 2663.92 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-25 14:54:34,984 epoch 3 - iter 1424/1786 - loss 0.08498648 - time (sec): 74.28 - samples/sec: 2675.02 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-25 14:54:44,185 epoch 3 - iter 1602/1786 - loss 0.08479702 - time (sec): 83.48 - samples/sec: 2669.15 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-25 14:54:53,654 epoch 3 - iter 1780/1786 - loss 0.08642108 - time (sec): 92.95 - samples/sec: 2669.53 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-25 14:54:53,978 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 14:54:53,978 EPOCH 3 done: loss 0.0865 - lr: 0.000039
|
120 |
+
2023-10-25 14:54:57,810 DEV : loss 0.13499563932418823 - f1-score (micro avg) 0.7639
|
121 |
+
2023-10-25 14:54:57,834 saving best model
|
122 |
+
2023-10-25 14:54:58,513 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 14:55:08,213 epoch 4 - iter 178/1786 - loss 0.07787612 - time (sec): 9.70 - samples/sec: 2662.18 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-25 14:55:17,762 epoch 4 - iter 356/1786 - loss 0.07006565 - time (sec): 19.25 - samples/sec: 2597.01 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-25 14:55:27,282 epoch 4 - iter 534/1786 - loss 0.06777304 - time (sec): 28.77 - samples/sec: 2561.15 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-25 14:55:36,832 epoch 4 - iter 712/1786 - loss 0.06334353 - time (sec): 38.32 - samples/sec: 2605.60 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-25 14:55:46,207 epoch 4 - iter 890/1786 - loss 0.06251813 - time (sec): 47.69 - samples/sec: 2628.71 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-25 14:55:55,932 epoch 4 - iter 1068/1786 - loss 0.06251651 - time (sec): 57.42 - samples/sec: 2599.12 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-25 14:56:05,686 epoch 4 - iter 1246/1786 - loss 0.06255099 - time (sec): 67.17 - samples/sec: 2585.14 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-25 14:56:15,297 epoch 4 - iter 1424/1786 - loss 0.06202994 - time (sec): 76.78 - samples/sec: 2582.61 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-25 14:56:25,232 epoch 4 - iter 1602/1786 - loss 0.06194081 - time (sec): 86.72 - samples/sec: 2583.68 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-25 14:56:34,873 epoch 4 - iter 1780/1786 - loss 0.06270639 - time (sec): 96.36 - samples/sec: 2573.68 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-25 14:56:35,198 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 14:56:35,198 EPOCH 4 done: loss 0.0628 - lr: 0.000033
|
135 |
+
2023-10-25 14:56:39,818 DEV : loss 0.18497972190380096 - f1-score (micro avg) 0.7612
|
136 |
+
2023-10-25 14:56:39,839 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-25 14:56:49,615 epoch 5 - iter 178/1786 - loss 0.05664153 - time (sec): 9.77 - samples/sec: 2702.46 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2023-10-25 14:56:59,207 epoch 5 - iter 356/1786 - loss 0.05522861 - time (sec): 19.37 - samples/sec: 2660.03 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-25 14:57:09,051 epoch 5 - iter 534/1786 - loss 0.05116909 - time (sec): 29.21 - samples/sec: 2614.02 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-25 14:57:18,747 epoch 5 - iter 712/1786 - loss 0.05214688 - time (sec): 38.91 - samples/sec: 2573.04 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-25 14:57:28,444 epoch 5 - iter 890/1786 - loss 0.04958778 - time (sec): 48.60 - samples/sec: 2534.05 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-25 14:57:38,250 epoch 5 - iter 1068/1786 - loss 0.04777163 - time (sec): 58.41 - samples/sec: 2521.25 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-10-25 14:57:48,040 epoch 5 - iter 1246/1786 - loss 0.04818385 - time (sec): 68.20 - samples/sec: 2496.31 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-25 14:57:57,629 epoch 5 - iter 1424/1786 - loss 0.04857465 - time (sec): 77.79 - samples/sec: 2538.86 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-25 14:58:07,122 epoch 5 - iter 1602/1786 - loss 0.04773650 - time (sec): 87.28 - samples/sec: 2557.13 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-25 14:58:16,910 epoch 5 - iter 1780/1786 - loss 0.04709670 - time (sec): 97.07 - samples/sec: 2554.87 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-25 14:58:17,232 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-25 14:58:17,233 EPOCH 5 done: loss 0.0470 - lr: 0.000028
|
149 |
+
2023-10-25 14:58:21,821 DEV : loss 0.19018808007240295 - f1-score (micro avg) 0.7738
|
150 |
+
2023-10-25 14:58:21,845 saving best model
|
151 |
+
2023-10-25 14:58:24,127 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-25 14:58:33,822 epoch 6 - iter 178/1786 - loss 0.02826424 - time (sec): 9.69 - samples/sec: 2757.71 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-25 14:58:43,468 epoch 6 - iter 356/1786 - loss 0.03138743 - time (sec): 19.34 - samples/sec: 2673.84 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-25 14:58:52,936 epoch 6 - iter 534/1786 - loss 0.03399004 - time (sec): 28.81 - samples/sec: 2617.71 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-25 14:59:02,446 epoch 6 - iter 712/1786 - loss 0.03560434 - time (sec): 38.32 - samples/sec: 2650.36 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-25 14:59:11,997 epoch 6 - iter 890/1786 - loss 0.03582739 - time (sec): 47.87 - samples/sec: 2636.12 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2023-10-25 14:59:21,474 epoch 6 - iter 1068/1786 - loss 0.03714910 - time (sec): 57.35 - samples/sec: 2634.03 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-10-25 14:59:30,970 epoch 6 - iter 1246/1786 - loss 0.03684768 - time (sec): 66.84 - samples/sec: 2621.31 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-25 14:59:40,363 epoch 6 - iter 1424/1786 - loss 0.03615725 - time (sec): 76.23 - samples/sec: 2618.38 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-25 14:59:49,929 epoch 6 - iter 1602/1786 - loss 0.03647106 - time (sec): 85.80 - samples/sec: 2621.52 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-25 14:59:59,457 epoch 6 - iter 1780/1786 - loss 0.03647415 - time (sec): 95.33 - samples/sec: 2601.49 - lr: 0.000022 - momentum: 0.000000
|
162 |
+
2023-10-25 14:59:59,775 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-25 14:59:59,775 EPOCH 6 done: loss 0.0364 - lr: 0.000022
|
164 |
+
2023-10-25 15:00:03,677 DEV : loss 0.20759737491607666 - f1-score (micro avg) 0.7809
|
165 |
+
2023-10-25 15:00:03,700 saving best model
|
166 |
+
2023-10-25 15:00:04,371 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-25 15:00:13,891 epoch 7 - iter 178/1786 - loss 0.02523091 - time (sec): 9.52 - samples/sec: 2414.94 - lr: 0.000022 - momentum: 0.000000
|
168 |
+
2023-10-25 15:00:23,459 epoch 7 - iter 356/1786 - loss 0.02954901 - time (sec): 19.08 - samples/sec: 2508.47 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-25 15:00:33,286 epoch 7 - iter 534/1786 - loss 0.02745032 - time (sec): 28.91 - samples/sec: 2616.19 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-25 15:00:43,077 epoch 7 - iter 712/1786 - loss 0.02791815 - time (sec): 38.70 - samples/sec: 2635.23 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-10-25 15:00:52,413 epoch 7 - iter 890/1786 - loss 0.02773715 - time (sec): 48.04 - samples/sec: 2590.73 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-25 15:01:01,227 epoch 7 - iter 1068/1786 - loss 0.02749024 - time (sec): 56.85 - samples/sec: 2611.10 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-25 15:01:09,845 epoch 7 - iter 1246/1786 - loss 0.02786391 - time (sec): 65.47 - samples/sec: 2648.12 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-25 15:01:18,505 epoch 7 - iter 1424/1786 - loss 0.02768994 - time (sec): 74.13 - samples/sec: 2674.88 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-25 15:01:27,450 epoch 7 - iter 1602/1786 - loss 0.02880790 - time (sec): 83.08 - samples/sec: 2677.87 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-25 15:01:36,479 epoch 7 - iter 1780/1786 - loss 0.02861625 - time (sec): 92.10 - samples/sec: 2693.30 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-25 15:01:36,780 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-25 15:01:36,781 EPOCH 7 done: loss 0.0287 - lr: 0.000017
|
179 |
+
2023-10-25 15:01:41,727 DEV : loss 0.210079625248909 - f1-score (micro avg) 0.7967
|
180 |
+
2023-10-25 15:01:41,752 saving best model
|
181 |
+
2023-10-25 15:01:42,460 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-25 15:01:51,741 epoch 8 - iter 178/1786 - loss 0.01706992 - time (sec): 9.28 - samples/sec: 2667.12 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-25 15:02:00,894 epoch 8 - iter 356/1786 - loss 0.01935111 - time (sec): 18.43 - samples/sec: 2782.76 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-25 15:02:10,126 epoch 8 - iter 534/1786 - loss 0.01874463 - time (sec): 27.66 - samples/sec: 2787.37 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-25 15:02:19,255 epoch 8 - iter 712/1786 - loss 0.01879846 - time (sec): 36.79 - samples/sec: 2798.76 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-25 15:02:28,045 epoch 8 - iter 890/1786 - loss 0.01977016 - time (sec): 45.58 - samples/sec: 2769.63 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-25 15:02:37,385 epoch 8 - iter 1068/1786 - loss 0.02060995 - time (sec): 54.92 - samples/sec: 2734.37 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-25 15:02:46,579 epoch 8 - iter 1246/1786 - loss 0.01992327 - time (sec): 64.12 - samples/sec: 2729.82 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-25 15:02:55,628 epoch 8 - iter 1424/1786 - loss 0.01930754 - time (sec): 73.17 - samples/sec: 2730.50 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-25 15:03:04,526 epoch 8 - iter 1602/1786 - loss 0.02003035 - time (sec): 82.06 - samples/sec: 2737.89 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-25 15:03:13,732 epoch 8 - iter 1780/1786 - loss 0.01945620 - time (sec): 91.27 - samples/sec: 2717.14 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-25 15:03:14,036 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-25 15:03:14,037 EPOCH 8 done: loss 0.0194 - lr: 0.000011
|
194 |
+
2023-10-25 15:03:17,868 DEV : loss 0.24006861448287964 - f1-score (micro avg) 0.8065
|
195 |
+
2023-10-25 15:03:17,891 saving best model
|
196 |
+
2023-10-25 15:03:18,584 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-25 15:03:28,381 epoch 9 - iter 178/1786 - loss 0.01966686 - time (sec): 9.79 - samples/sec: 2497.75 - lr: 0.000011 - momentum: 0.000000
|
198 |
+
2023-10-25 15:03:38,805 epoch 9 - iter 356/1786 - loss 0.01914487 - time (sec): 20.22 - samples/sec: 2486.87 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-25 15:03:48,480 epoch 9 - iter 534/1786 - loss 0.01935434 - time (sec): 29.89 - samples/sec: 2548.37 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-25 15:03:58,187 epoch 9 - iter 712/1786 - loss 0.02027442 - time (sec): 39.60 - samples/sec: 2527.51 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-25 15:04:07,497 epoch 9 - iter 890/1786 - loss 0.01881800 - time (sec): 48.91 - samples/sec: 2574.08 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-25 15:04:16,574 epoch 9 - iter 1068/1786 - loss 0.01810846 - time (sec): 57.99 - samples/sec: 2592.00 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-25 15:04:25,884 epoch 9 - iter 1246/1786 - loss 0.01803578 - time (sec): 67.30 - samples/sec: 2607.25 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-25 15:04:36,028 epoch 9 - iter 1424/1786 - loss 0.01811109 - time (sec): 77.44 - samples/sec: 2574.70 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-25 15:04:45,582 epoch 9 - iter 1602/1786 - loss 0.01892874 - time (sec): 87.00 - samples/sec: 2579.09 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-25 15:04:55,055 epoch 9 - iter 1780/1786 - loss 0.02267831 - time (sec): 96.47 - samples/sec: 2571.05 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-25 15:04:55,366 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-25 15:04:55,367 EPOCH 9 done: loss 0.0230 - lr: 0.000006
|
209 |
+
2023-10-25 15:04:59,142 DEV : loss 0.25254154205322266 - f1-score (micro avg) 0.6079
|
210 |
+
2023-10-25 15:04:59,166 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-25 15:05:08,791 epoch 10 - iter 178/1786 - loss 0.11012665 - time (sec): 9.62 - samples/sec: 2684.65 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-25 15:05:17,986 epoch 10 - iter 356/1786 - loss 0.07275891 - time (sec): 18.82 - samples/sec: 2728.54 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-25 15:05:26,833 epoch 10 - iter 534/1786 - loss 0.06185256 - time (sec): 27.66 - samples/sec: 2718.84 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-25 15:05:35,495 epoch 10 - iter 712/1786 - loss 0.06154437 - time (sec): 36.33 - samples/sec: 2766.27 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-25 15:05:44,207 epoch 10 - iter 890/1786 - loss 0.06553764 - time (sec): 45.04 - samples/sec: 2755.02 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-25 15:05:52,947 epoch 10 - iter 1068/1786 - loss 0.06476228 - time (sec): 53.78 - samples/sec: 2753.92 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-25 15:06:01,545 epoch 10 - iter 1246/1786 - loss 0.06251026 - time (sec): 62.38 - samples/sec: 2780.55 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-25 15:06:10,626 epoch 10 - iter 1424/1786 - loss 0.06067494 - time (sec): 71.46 - samples/sec: 2783.86 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-25 15:06:19,695 epoch 10 - iter 1602/1786 - loss 0.05860883 - time (sec): 80.53 - samples/sec: 2772.55 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-25 15:06:29,012 epoch 10 - iter 1780/1786 - loss 0.05709972 - time (sec): 89.84 - samples/sec: 2758.02 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-25 15:06:29,337 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-25 15:06:29,338 EPOCH 10 done: loss 0.0570 - lr: 0.000000
|
223 |
+
2023-10-25 15:06:34,225 DEV : loss 0.2218979001045227 - f1-score (micro avg) 0.6822
|
224 |
+
2023-10-25 15:06:34,730 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-25 15:06:34,731 Loading model from best epoch ...
|
226 |
+
2023-10-25 15:06:36,683 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
227 |
+
2023-10-25 15:06:48,731
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.6719
|
230 |
+
- F-score (macro) 0.5777
|
231 |
+
- Accuracy 0.5222
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
LOC 0.6930 0.6721 0.6824 1095
|
237 |
+
PER 0.7336 0.7510 0.7422 1012
|
238 |
+
ORG 0.4452 0.5350 0.4860 357
|
239 |
+
HumanProd 0.3571 0.4545 0.4000 33
|
240 |
+
|
241 |
+
micro avg 0.6625 0.6816 0.6719 2497
|
242 |
+
macro avg 0.5572 0.6032 0.5777 2497
|
243 |
+
weighted avg 0.6696 0.6816 0.6748 2497
|
244 |
+
|
245 |
+
2023-10-25 15:06:48,732 ----------------------------------------------------------------------------------------------------
|