stefan-it's picture
Upload folder using huggingface_hub
c5e8fd8
raw
history blame
25.3 kB
2023-10-10 23:17:02,388 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,390 Model: "SequenceTagger(
(embeddings): ByT5Embeddings(
(model): T5EncoderModel(
(shared): Embedding(384, 1472)
(encoder): T5Stack(
(embed_tokens): Embedding(384, 1472)
(block): ModuleList(
(0): T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
(relative_attention_bias): Embedding(32, 6)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(1-11): 11 x T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1472, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-10 23:17:02,390 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,390 MultiCorpus: 1166 train + 165 dev + 415 test sentences
- NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
2023-10-10 23:17:02,390 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,390 Train: 1166 sentences
2023-10-10 23:17:02,391 (train_with_dev=False, train_with_test=False)
2023-10-10 23:17:02,391 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,391 Training Params:
2023-10-10 23:17:02,391 - learning_rate: "0.00016"
2023-10-10 23:17:02,391 - mini_batch_size: "8"
2023-10-10 23:17:02,391 - max_epochs: "10"
2023-10-10 23:17:02,391 - shuffle: "True"
2023-10-10 23:17:02,391 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,391 Plugins:
2023-10-10 23:17:02,391 - TensorboardLogger
2023-10-10 23:17:02,391 - LinearScheduler | warmup_fraction: '0.1'
2023-10-10 23:17:02,391 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,391 Final evaluation on model from best epoch (best-model.pt)
2023-10-10 23:17:02,391 - metric: "('micro avg', 'f1-score')"
2023-10-10 23:17:02,391 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,392 Computation:
2023-10-10 23:17:02,392 - compute on device: cuda:0
2023-10-10 23:17:02,392 - embedding storage: none
2023-10-10 23:17:02,392 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,392 Model training base path: "hmbench-newseye/fi-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
2023-10-10 23:17:02,392 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,392 ----------------------------------------------------------------------------------------------------
2023-10-10 23:17:02,392 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-10 23:17:12,249 epoch 1 - iter 14/146 - loss 2.85068931 - time (sec): 9.85 - samples/sec: 507.67 - lr: 0.000014 - momentum: 0.000000
2023-10-10 23:17:21,019 epoch 1 - iter 28/146 - loss 2.84691647 - time (sec): 18.63 - samples/sec: 469.95 - lr: 0.000030 - momentum: 0.000000
2023-10-10 23:17:30,537 epoch 1 - iter 42/146 - loss 2.83473964 - time (sec): 28.14 - samples/sec: 472.52 - lr: 0.000045 - momentum: 0.000000
2023-10-10 23:17:39,867 epoch 1 - iter 56/146 - loss 2.81949073 - time (sec): 37.47 - samples/sec: 468.02 - lr: 0.000060 - momentum: 0.000000
2023-10-10 23:17:48,437 epoch 1 - iter 70/146 - loss 2.78568641 - time (sec): 46.04 - samples/sec: 463.24 - lr: 0.000076 - momentum: 0.000000
2023-10-10 23:17:56,794 epoch 1 - iter 84/146 - loss 2.72961033 - time (sec): 54.40 - samples/sec: 460.97 - lr: 0.000091 - momentum: 0.000000
2023-10-10 23:18:06,346 epoch 1 - iter 98/146 - loss 2.65786696 - time (sec): 63.95 - samples/sec: 455.80 - lr: 0.000106 - momentum: 0.000000
2023-10-10 23:18:16,236 epoch 1 - iter 112/146 - loss 2.57487198 - time (sec): 73.84 - samples/sec: 452.26 - lr: 0.000122 - momentum: 0.000000
2023-10-10 23:18:26,359 epoch 1 - iter 126/146 - loss 2.47816169 - time (sec): 83.97 - samples/sec: 452.64 - lr: 0.000137 - momentum: 0.000000
2023-10-10 23:18:36,630 epoch 1 - iter 140/146 - loss 2.38111585 - time (sec): 94.24 - samples/sec: 453.04 - lr: 0.000152 - momentum: 0.000000
2023-10-10 23:18:40,373 ----------------------------------------------------------------------------------------------------
2023-10-10 23:18:40,374 EPOCH 1 done: loss 2.3434 - lr: 0.000152
2023-10-10 23:18:46,381 DEV : loss 1.2865359783172607 - f1-score (micro avg) 0.0
2023-10-10 23:18:46,390 ----------------------------------------------------------------------------------------------------
2023-10-10 23:18:55,313 epoch 2 - iter 14/146 - loss 1.28415238 - time (sec): 8.92 - samples/sec: 472.05 - lr: 0.000158 - momentum: 0.000000
2023-10-10 23:19:05,700 epoch 2 - iter 28/146 - loss 1.19956105 - time (sec): 19.31 - samples/sec: 464.48 - lr: 0.000157 - momentum: 0.000000
2023-10-10 23:19:16,430 epoch 2 - iter 42/146 - loss 1.13288131 - time (sec): 30.04 - samples/sec: 458.33 - lr: 0.000155 - momentum: 0.000000
2023-10-10 23:19:26,012 epoch 2 - iter 56/146 - loss 1.07129114 - time (sec): 39.62 - samples/sec: 437.61 - lr: 0.000153 - momentum: 0.000000
2023-10-10 23:19:35,741 epoch 2 - iter 70/146 - loss 0.99550129 - time (sec): 49.35 - samples/sec: 438.17 - lr: 0.000152 - momentum: 0.000000
2023-10-10 23:19:44,108 epoch 2 - iter 84/146 - loss 0.96876458 - time (sec): 57.72 - samples/sec: 427.25 - lr: 0.000150 - momentum: 0.000000
2023-10-10 23:19:53,864 epoch 2 - iter 98/146 - loss 0.91377890 - time (sec): 67.47 - samples/sec: 432.59 - lr: 0.000148 - momentum: 0.000000
2023-10-10 23:20:04,816 epoch 2 - iter 112/146 - loss 0.85770767 - time (sec): 78.42 - samples/sec: 432.27 - lr: 0.000147 - momentum: 0.000000
2023-10-10 23:20:15,157 epoch 2 - iter 126/146 - loss 0.81157139 - time (sec): 88.76 - samples/sec: 430.30 - lr: 0.000145 - momentum: 0.000000
2023-10-10 23:20:25,002 epoch 2 - iter 140/146 - loss 0.78208038 - time (sec): 98.61 - samples/sec: 427.37 - lr: 0.000143 - momentum: 0.000000
2023-10-10 23:20:29,385 ----------------------------------------------------------------------------------------------------
2023-10-10 23:20:29,385 EPOCH 2 done: loss 0.8100 - lr: 0.000143
2023-10-10 23:20:36,275 DEV : loss 0.44310665130615234 - f1-score (micro avg) 0.0
2023-10-10 23:20:36,286 ----------------------------------------------------------------------------------------------------
2023-10-10 23:20:45,315 epoch 3 - iter 14/146 - loss 0.54953200 - time (sec): 9.03 - samples/sec: 403.67 - lr: 0.000141 - momentum: 0.000000
2023-10-10 23:20:55,048 epoch 3 - iter 28/146 - loss 0.47992717 - time (sec): 18.76 - samples/sec: 414.34 - lr: 0.000139 - momentum: 0.000000
2023-10-10 23:21:05,647 epoch 3 - iter 42/146 - loss 0.56595579 - time (sec): 29.36 - samples/sec: 427.02 - lr: 0.000137 - momentum: 0.000000
2023-10-10 23:21:15,050 epoch 3 - iter 56/146 - loss 0.54451042 - time (sec): 38.76 - samples/sec: 422.88 - lr: 0.000136 - momentum: 0.000000
2023-10-10 23:21:24,347 epoch 3 - iter 70/146 - loss 0.51838610 - time (sec): 48.06 - samples/sec: 429.97 - lr: 0.000134 - momentum: 0.000000
2023-10-10 23:21:33,558 epoch 3 - iter 84/146 - loss 0.50225077 - time (sec): 57.27 - samples/sec: 432.25 - lr: 0.000132 - momentum: 0.000000
2023-10-10 23:21:42,473 epoch 3 - iter 98/146 - loss 0.48025404 - time (sec): 66.19 - samples/sec: 441.08 - lr: 0.000131 - momentum: 0.000000
2023-10-10 23:21:52,350 epoch 3 - iter 112/146 - loss 0.46014641 - time (sec): 76.06 - samples/sec: 445.61 - lr: 0.000129 - momentum: 0.000000
2023-10-10 23:22:02,256 epoch 3 - iter 126/146 - loss 0.44598830 - time (sec): 85.97 - samples/sec: 445.28 - lr: 0.000127 - momentum: 0.000000
2023-10-10 23:22:12,230 epoch 3 - iter 140/146 - loss 0.43394233 - time (sec): 95.94 - samples/sec: 446.51 - lr: 0.000125 - momentum: 0.000000
2023-10-10 23:22:16,255 ----------------------------------------------------------------------------------------------------
2023-10-10 23:22:16,255 EPOCH 3 done: loss 0.4381 - lr: 0.000125
2023-10-10 23:22:22,564 DEV : loss 0.3388194143772125 - f1-score (micro avg) 0.233
2023-10-10 23:22:22,574 saving best model
2023-10-10 23:22:23,549 ----------------------------------------------------------------------------------------------------
2023-10-10 23:22:32,339 epoch 4 - iter 14/146 - loss 0.35134012 - time (sec): 8.79 - samples/sec: 464.07 - lr: 0.000123 - momentum: 0.000000
2023-10-10 23:22:41,623 epoch 4 - iter 28/146 - loss 0.42932021 - time (sec): 18.07 - samples/sec: 467.42 - lr: 0.000121 - momentum: 0.000000
2023-10-10 23:22:50,468 epoch 4 - iter 42/146 - loss 0.35560185 - time (sec): 26.92 - samples/sec: 473.02 - lr: 0.000120 - momentum: 0.000000
2023-10-10 23:22:58,955 epoch 4 - iter 56/146 - loss 0.35249099 - time (sec): 35.40 - samples/sec: 469.36 - lr: 0.000118 - momentum: 0.000000
2023-10-10 23:23:07,930 epoch 4 - iter 70/146 - loss 0.35507799 - time (sec): 44.38 - samples/sec: 464.26 - lr: 0.000116 - momentum: 0.000000
2023-10-10 23:23:16,896 epoch 4 - iter 84/146 - loss 0.35517374 - time (sec): 53.34 - samples/sec: 462.94 - lr: 0.000115 - momentum: 0.000000
2023-10-10 23:23:26,090 epoch 4 - iter 98/146 - loss 0.33861094 - time (sec): 62.54 - samples/sec: 465.58 - lr: 0.000113 - momentum: 0.000000
2023-10-10 23:23:35,066 epoch 4 - iter 112/146 - loss 0.33627771 - time (sec): 71.51 - samples/sec: 462.76 - lr: 0.000111 - momentum: 0.000000
2023-10-10 23:23:44,314 epoch 4 - iter 126/146 - loss 0.33904883 - time (sec): 80.76 - samples/sec: 465.33 - lr: 0.000109 - momentum: 0.000000
2023-10-10 23:23:53,980 epoch 4 - iter 140/146 - loss 0.34205571 - time (sec): 90.43 - samples/sec: 469.00 - lr: 0.000108 - momentum: 0.000000
2023-10-10 23:23:58,178 ----------------------------------------------------------------------------------------------------
2023-10-10 23:23:58,178 EPOCH 4 done: loss 0.3373 - lr: 0.000108
2023-10-10 23:24:04,577 DEV : loss 0.25445958971977234 - f1-score (micro avg) 0.2262
2023-10-10 23:24:04,587 ----------------------------------------------------------------------------------------------------
2023-10-10 23:24:13,816 epoch 5 - iter 14/146 - loss 0.32229392 - time (sec): 9.23 - samples/sec: 439.47 - lr: 0.000105 - momentum: 0.000000
2023-10-10 23:24:23,678 epoch 5 - iter 28/146 - loss 0.26837025 - time (sec): 19.09 - samples/sec: 464.72 - lr: 0.000104 - momentum: 0.000000
2023-10-10 23:24:32,600 epoch 5 - iter 42/146 - loss 0.26326562 - time (sec): 28.01 - samples/sec: 458.17 - lr: 0.000102 - momentum: 0.000000
2023-10-10 23:24:41,405 epoch 5 - iter 56/146 - loss 0.25728661 - time (sec): 36.82 - samples/sec: 461.08 - lr: 0.000100 - momentum: 0.000000
2023-10-10 23:24:50,289 epoch 5 - iter 70/146 - loss 0.26829976 - time (sec): 45.70 - samples/sec: 456.49 - lr: 0.000099 - momentum: 0.000000
2023-10-10 23:25:00,492 epoch 5 - iter 84/146 - loss 0.29246429 - time (sec): 55.90 - samples/sec: 467.11 - lr: 0.000097 - momentum: 0.000000
2023-10-10 23:25:10,684 epoch 5 - iter 98/146 - loss 0.29542982 - time (sec): 66.10 - samples/sec: 467.01 - lr: 0.000095 - momentum: 0.000000
2023-10-10 23:25:20,273 epoch 5 - iter 112/146 - loss 0.28924318 - time (sec): 75.68 - samples/sec: 467.48 - lr: 0.000093 - momentum: 0.000000
2023-10-10 23:25:28,956 epoch 5 - iter 126/146 - loss 0.28713756 - time (sec): 84.37 - samples/sec: 463.52 - lr: 0.000092 - momentum: 0.000000
2023-10-10 23:25:37,924 epoch 5 - iter 140/146 - loss 0.28490061 - time (sec): 93.34 - samples/sec: 457.23 - lr: 0.000090 - momentum: 0.000000
2023-10-10 23:25:41,869 ----------------------------------------------------------------------------------------------------
2023-10-10 23:25:41,869 EPOCH 5 done: loss 0.2832 - lr: 0.000090
2023-10-10 23:25:48,099 DEV : loss 0.22307763993740082 - f1-score (micro avg) 0.2994
2023-10-10 23:25:48,108 saving best model
2023-10-10 23:25:56,000 ----------------------------------------------------------------------------------------------------
2023-10-10 23:26:06,665 epoch 6 - iter 14/146 - loss 0.20640681 - time (sec): 10.66 - samples/sec: 436.38 - lr: 0.000088 - momentum: 0.000000
2023-10-10 23:26:15,474 epoch 6 - iter 28/146 - loss 0.23046142 - time (sec): 19.47 - samples/sec: 443.97 - lr: 0.000086 - momentum: 0.000000
2023-10-10 23:26:24,366 epoch 6 - iter 42/146 - loss 0.21524711 - time (sec): 28.36 - samples/sec: 452.86 - lr: 0.000084 - momentum: 0.000000
2023-10-10 23:26:33,110 epoch 6 - iter 56/146 - loss 0.22748057 - time (sec): 37.11 - samples/sec: 457.24 - lr: 0.000083 - momentum: 0.000000
2023-10-10 23:26:41,853 epoch 6 - iter 70/146 - loss 0.23191428 - time (sec): 45.85 - samples/sec: 462.58 - lr: 0.000081 - momentum: 0.000000
2023-10-10 23:26:50,581 epoch 6 - iter 84/146 - loss 0.23502256 - time (sec): 54.58 - samples/sec: 460.47 - lr: 0.000079 - momentum: 0.000000
2023-10-10 23:27:00,694 epoch 6 - iter 98/146 - loss 0.24896975 - time (sec): 64.69 - samples/sec: 467.42 - lr: 0.000077 - momentum: 0.000000
2023-10-10 23:27:09,453 epoch 6 - iter 112/146 - loss 0.24733184 - time (sec): 73.45 - samples/sec: 465.81 - lr: 0.000076 - momentum: 0.000000
2023-10-10 23:27:17,982 epoch 6 - iter 126/146 - loss 0.24239142 - time (sec): 81.98 - samples/sec: 466.69 - lr: 0.000074 - momentum: 0.000000
2023-10-10 23:27:26,637 epoch 6 - iter 140/146 - loss 0.23759475 - time (sec): 90.64 - samples/sec: 468.61 - lr: 0.000072 - momentum: 0.000000
2023-10-10 23:27:30,382 ----------------------------------------------------------------------------------------------------
2023-10-10 23:27:30,382 EPOCH 6 done: loss 0.2349 - lr: 0.000072
2023-10-10 23:27:36,129 DEV : loss 0.19796797633171082 - f1-score (micro avg) 0.4681
2023-10-10 23:27:36,139 saving best model
2023-10-10 23:27:43,828 ----------------------------------------------------------------------------------------------------
2023-10-10 23:27:52,247 epoch 7 - iter 14/146 - loss 0.19250517 - time (sec): 8.41 - samples/sec: 495.70 - lr: 0.000070 - momentum: 0.000000
2023-10-10 23:28:01,366 epoch 7 - iter 28/146 - loss 0.18333791 - time (sec): 17.53 - samples/sec: 525.61 - lr: 0.000068 - momentum: 0.000000
2023-10-10 23:28:09,139 epoch 7 - iter 42/146 - loss 0.18322523 - time (sec): 25.31 - samples/sec: 500.87 - lr: 0.000067 - momentum: 0.000000
2023-10-10 23:28:17,468 epoch 7 - iter 56/146 - loss 0.19443327 - time (sec): 33.64 - samples/sec: 499.47 - lr: 0.000065 - momentum: 0.000000
2023-10-10 23:28:24,988 epoch 7 - iter 70/146 - loss 0.18783057 - time (sec): 41.16 - samples/sec: 487.71 - lr: 0.000063 - momentum: 0.000000
2023-10-10 23:28:33,260 epoch 7 - iter 84/146 - loss 0.19033179 - time (sec): 49.43 - samples/sec: 490.52 - lr: 0.000061 - momentum: 0.000000
2023-10-10 23:28:43,265 epoch 7 - iter 98/146 - loss 0.19173980 - time (sec): 59.43 - samples/sec: 494.50 - lr: 0.000060 - momentum: 0.000000
2023-10-10 23:28:52,163 epoch 7 - iter 112/146 - loss 0.18999195 - time (sec): 68.33 - samples/sec: 491.39 - lr: 0.000058 - momentum: 0.000000
2023-10-10 23:29:01,255 epoch 7 - iter 126/146 - loss 0.19723376 - time (sec): 77.42 - samples/sec: 488.30 - lr: 0.000056 - momentum: 0.000000
2023-10-10 23:29:11,917 epoch 7 - iter 140/146 - loss 0.19244750 - time (sec): 88.08 - samples/sec: 485.24 - lr: 0.000055 - momentum: 0.000000
2023-10-10 23:29:16,231 ----------------------------------------------------------------------------------------------------
2023-10-10 23:29:16,232 EPOCH 7 done: loss 0.1924 - lr: 0.000055
2023-10-10 23:29:22,237 DEV : loss 0.17689262330532074 - f1-score (micro avg) 0.5087
2023-10-10 23:29:22,248 saving best model
2023-10-10 23:29:30,065 ----------------------------------------------------------------------------------------------------
2023-10-10 23:29:40,474 epoch 8 - iter 14/146 - loss 0.16935796 - time (sec): 10.40 - samples/sec: 406.27 - lr: 0.000052 - momentum: 0.000000
2023-10-10 23:29:50,068 epoch 8 - iter 28/146 - loss 0.18290286 - time (sec): 20.00 - samples/sec: 424.49 - lr: 0.000051 - momentum: 0.000000
2023-10-10 23:29:59,390 epoch 8 - iter 42/146 - loss 0.16793125 - time (sec): 29.32 - samples/sec: 434.61 - lr: 0.000049 - momentum: 0.000000
2023-10-10 23:30:07,662 epoch 8 - iter 56/146 - loss 0.17320389 - time (sec): 37.59 - samples/sec: 431.94 - lr: 0.000047 - momentum: 0.000000
2023-10-10 23:30:16,446 epoch 8 - iter 70/146 - loss 0.18227748 - time (sec): 46.38 - samples/sec: 452.40 - lr: 0.000045 - momentum: 0.000000
2023-10-10 23:30:24,610 epoch 8 - iter 84/146 - loss 0.18108910 - time (sec): 54.54 - samples/sec: 454.08 - lr: 0.000044 - momentum: 0.000000
2023-10-10 23:30:33,732 epoch 8 - iter 98/146 - loss 0.17092159 - time (sec): 63.66 - samples/sec: 464.89 - lr: 0.000042 - momentum: 0.000000
2023-10-10 23:30:41,860 epoch 8 - iter 112/146 - loss 0.16964323 - time (sec): 71.79 - samples/sec: 465.62 - lr: 0.000040 - momentum: 0.000000
2023-10-10 23:30:51,139 epoch 8 - iter 126/146 - loss 0.16593660 - time (sec): 81.07 - samples/sec: 471.56 - lr: 0.000039 - momentum: 0.000000
2023-10-10 23:31:00,500 epoch 8 - iter 140/146 - loss 0.16434625 - time (sec): 90.43 - samples/sec: 477.80 - lr: 0.000037 - momentum: 0.000000
2023-10-10 23:31:03,477 ----------------------------------------------------------------------------------------------------
2023-10-10 23:31:03,477 EPOCH 8 done: loss 0.1624 - lr: 0.000037
2023-10-10 23:31:09,101 DEV : loss 0.16704627871513367 - f1-score (micro avg) 0.5245
2023-10-10 23:31:09,111 saving best model
2023-10-10 23:31:16,953 ----------------------------------------------------------------------------------------------------
2023-10-10 23:31:25,648 epoch 9 - iter 14/146 - loss 0.15024636 - time (sec): 8.69 - samples/sec: 495.48 - lr: 0.000035 - momentum: 0.000000
2023-10-10 23:31:33,764 epoch 9 - iter 28/146 - loss 0.14496549 - time (sec): 16.81 - samples/sec: 490.96 - lr: 0.000033 - momentum: 0.000000
2023-10-10 23:31:41,355 epoch 9 - iter 42/146 - loss 0.16254726 - time (sec): 24.40 - samples/sec: 478.09 - lr: 0.000031 - momentum: 0.000000
2023-10-10 23:31:49,685 epoch 9 - iter 56/146 - loss 0.15667159 - time (sec): 32.73 - samples/sec: 485.05 - lr: 0.000029 - momentum: 0.000000
2023-10-10 23:31:59,645 epoch 9 - iter 70/146 - loss 0.16060893 - time (sec): 42.69 - samples/sec: 507.84 - lr: 0.000028 - momentum: 0.000000
2023-10-10 23:32:07,172 epoch 9 - iter 84/146 - loss 0.15235930 - time (sec): 50.21 - samples/sec: 496.36 - lr: 0.000026 - momentum: 0.000000
2023-10-10 23:32:16,069 epoch 9 - iter 98/146 - loss 0.15236847 - time (sec): 59.11 - samples/sec: 502.54 - lr: 0.000024 - momentum: 0.000000
2023-10-10 23:32:24,523 epoch 9 - iter 112/146 - loss 0.15005669 - time (sec): 67.57 - samples/sec: 502.42 - lr: 0.000023 - momentum: 0.000000
2023-10-10 23:32:32,980 epoch 9 - iter 126/146 - loss 0.14889199 - time (sec): 76.02 - samples/sec: 501.27 - lr: 0.000021 - momentum: 0.000000
2023-10-10 23:32:42,174 epoch 9 - iter 140/146 - loss 0.14689391 - time (sec): 85.22 - samples/sec: 504.07 - lr: 0.000019 - momentum: 0.000000
2023-10-10 23:32:45,520 ----------------------------------------------------------------------------------------------------
2023-10-10 23:32:45,520 EPOCH 9 done: loss 0.1449 - lr: 0.000019
2023-10-10 23:32:51,520 DEV : loss 0.16200371086597443 - f1-score (micro avg) 0.5683
2023-10-10 23:32:51,529 saving best model
2023-10-10 23:32:55,320 ----------------------------------------------------------------------------------------------------
2023-10-10 23:33:03,708 epoch 10 - iter 14/146 - loss 0.15671761 - time (sec): 8.38 - samples/sec: 484.05 - lr: 0.000017 - momentum: 0.000000
2023-10-10 23:33:12,911 epoch 10 - iter 28/146 - loss 0.14834250 - time (sec): 17.59 - samples/sec: 499.26 - lr: 0.000015 - momentum: 0.000000
2023-10-10 23:33:21,096 epoch 10 - iter 42/146 - loss 0.14012051 - time (sec): 25.77 - samples/sec: 483.92 - lr: 0.000013 - momentum: 0.000000
2023-10-10 23:33:29,718 epoch 10 - iter 56/146 - loss 0.13354190 - time (sec): 34.39 - samples/sec: 485.93 - lr: 0.000012 - momentum: 0.000000
2023-10-10 23:33:38,610 epoch 10 - iter 70/146 - loss 0.12759908 - time (sec): 43.29 - samples/sec: 486.33 - lr: 0.000010 - momentum: 0.000000
2023-10-10 23:33:46,661 epoch 10 - iter 84/146 - loss 0.12647792 - time (sec): 51.34 - samples/sec: 483.20 - lr: 0.000008 - momentum: 0.000000
2023-10-10 23:33:56,176 epoch 10 - iter 98/146 - loss 0.12934689 - time (sec): 60.85 - samples/sec: 487.90 - lr: 0.000007 - momentum: 0.000000
2023-10-10 23:34:05,223 epoch 10 - iter 112/146 - loss 0.13516861 - time (sec): 69.90 - samples/sec: 490.17 - lr: 0.000005 - momentum: 0.000000
2023-10-10 23:34:14,184 epoch 10 - iter 126/146 - loss 0.13301443 - time (sec): 78.86 - samples/sec: 486.70 - lr: 0.000003 - momentum: 0.000000
2023-10-10 23:34:23,644 epoch 10 - iter 140/146 - loss 0.13565286 - time (sec): 88.32 - samples/sec: 486.78 - lr: 0.000002 - momentum: 0.000000
2023-10-10 23:34:27,061 ----------------------------------------------------------------------------------------------------
2023-10-10 23:34:27,061 EPOCH 10 done: loss 0.1343 - lr: 0.000002
2023-10-10 23:34:33,022 DEV : loss 0.16090121865272522 - f1-score (micro avg) 0.5875
2023-10-10 23:34:33,032 saving best model
2023-10-10 23:34:41,145 ----------------------------------------------------------------------------------------------------
2023-10-10 23:34:41,147 Loading model from best epoch ...
2023-10-10 23:34:44,867 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-10 23:34:58,663
Results:
- F-score (micro) 0.6529
- F-score (macro) 0.4086
- Accuracy 0.5355
By class:
precision recall f1-score support
PER 0.7455 0.7069 0.7257 348
LOC 0.6192 0.7663 0.6849 261
ORG 0.1918 0.2692 0.2240 52
HumanProd 0.0000 0.0000 0.0000 22
micro avg 0.6336 0.6735 0.6529 683
macro avg 0.3891 0.4356 0.4086 683
weighted avg 0.6310 0.6735 0.6485 683
2023-10-10 23:34:58,663 ----------------------------------------------------------------------------------------------------