Upload ./training.log with huggingface_hub
Browse files- training.log +245 -0
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 21:30:08,203 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 21:30:08,204 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 21:30:08,204 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 21:30:08,204 MultiCorpus: 1166 train + 165 dev + 415 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
|
53 |
+
2023-10-25 21:30:08,204 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 21:30:08,204 Train: 1166 sentences
|
55 |
+
2023-10-25 21:30:08,204 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 21:30:08,204 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 21:30:08,204 Training Params:
|
58 |
+
2023-10-25 21:30:08,204 - learning_rate: "3e-05"
|
59 |
+
2023-10-25 21:30:08,204 - mini_batch_size: "4"
|
60 |
+
2023-10-25 21:30:08,204 - max_epochs: "10"
|
61 |
+
2023-10-25 21:30:08,204 - shuffle: "True"
|
62 |
+
2023-10-25 21:30:08,204 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 21:30:08,204 Plugins:
|
64 |
+
2023-10-25 21:30:08,205 - TensorboardLogger
|
65 |
+
2023-10-25 21:30:08,205 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 21:30:08,205 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 21:30:08,205 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 21:30:08,205 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 21:30:08,205 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 21:30:08,205 Computation:
|
71 |
+
2023-10-25 21:30:08,205 - compute on device: cuda:0
|
72 |
+
2023-10-25 21:30:08,205 - embedding storage: none
|
73 |
+
2023-10-25 21:30:08,205 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 21:30:08,205 Model training base path: "hmbench-newseye/fi-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
75 |
+
2023-10-25 21:30:08,205 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 21:30:08,205 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 21:30:08,205 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 21:30:09,606 epoch 1 - iter 29/292 - loss 2.59371458 - time (sec): 1.40 - samples/sec: 2896.33 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-25 21:30:10,850 epoch 1 - iter 58/292 - loss 1.95964027 - time (sec): 2.64 - samples/sec: 2959.98 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-25 21:30:12,193 epoch 1 - iter 87/292 - loss 1.55409749 - time (sec): 3.99 - samples/sec: 3138.14 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-25 21:30:13,533 epoch 1 - iter 116/292 - loss 1.29448959 - time (sec): 5.33 - samples/sec: 3211.67 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-25 21:30:14,805 epoch 1 - iter 145/292 - loss 1.10125147 - time (sec): 6.60 - samples/sec: 3291.64 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-25 21:30:16,127 epoch 1 - iter 174/292 - loss 0.98629607 - time (sec): 7.92 - samples/sec: 3235.22 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-25 21:30:17,493 epoch 1 - iter 203/292 - loss 0.86851694 - time (sec): 9.29 - samples/sec: 3310.48 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-25 21:30:18,859 epoch 1 - iter 232/292 - loss 0.77881535 - time (sec): 10.65 - samples/sec: 3357.49 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-25 21:30:20,169 epoch 1 - iter 261/292 - loss 0.72190147 - time (sec): 11.96 - samples/sec: 3368.38 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-25 21:30:21,437 epoch 1 - iter 290/292 - loss 0.68367522 - time (sec): 13.23 - samples/sec: 3341.39 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-25 21:30:21,516 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 21:30:21,516 EPOCH 1 done: loss 0.6826 - lr: 0.000030
|
90 |
+
2023-10-25 21:30:22,184 DEV : loss 0.1497330218553543 - f1-score (micro avg) 0.5972
|
91 |
+
2023-10-25 21:30:22,188 saving best model
|
92 |
+
2023-10-25 21:30:22,530 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 21:30:23,819 epoch 2 - iter 29/292 - loss 0.17252226 - time (sec): 1.29 - samples/sec: 3461.31 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-25 21:30:25,115 epoch 2 - iter 58/292 - loss 0.19611204 - time (sec): 2.58 - samples/sec: 3403.61 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-25 21:30:26,423 epoch 2 - iter 87/292 - loss 0.18751975 - time (sec): 3.89 - samples/sec: 3340.71 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-25 21:30:27,769 epoch 2 - iter 116/292 - loss 0.17497620 - time (sec): 5.24 - samples/sec: 3374.72 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-25 21:30:29,058 epoch 2 - iter 145/292 - loss 0.16837296 - time (sec): 6.53 - samples/sec: 3335.07 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-25 21:30:30,367 epoch 2 - iter 174/292 - loss 0.16678211 - time (sec): 7.84 - samples/sec: 3347.37 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-25 21:30:31,620 epoch 2 - iter 203/292 - loss 0.16469283 - time (sec): 9.09 - samples/sec: 3342.18 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-25 21:30:32,877 epoch 2 - iter 232/292 - loss 0.16617154 - time (sec): 10.35 - samples/sec: 3360.39 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-25 21:30:34,211 epoch 2 - iter 261/292 - loss 0.16625252 - time (sec): 11.68 - samples/sec: 3367.96 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-25 21:30:35,519 epoch 2 - iter 290/292 - loss 0.16032533 - time (sec): 12.99 - samples/sec: 3391.30 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-25 21:30:35,604 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 21:30:35,604 EPOCH 2 done: loss 0.1595 - lr: 0.000027
|
105 |
+
2023-10-25 21:30:36,510 DEV : loss 0.12749069929122925 - f1-score (micro avg) 0.6216
|
106 |
+
2023-10-25 21:30:36,514 saving best model
|
107 |
+
2023-10-25 21:30:37,133 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 21:30:38,576 epoch 3 - iter 29/292 - loss 0.09022188 - time (sec): 1.44 - samples/sec: 4060.31 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-25 21:30:39,893 epoch 3 - iter 58/292 - loss 0.10087929 - time (sec): 2.76 - samples/sec: 3781.78 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-25 21:30:41,160 epoch 3 - iter 87/292 - loss 0.10208490 - time (sec): 4.03 - samples/sec: 3635.44 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-25 21:30:42,449 epoch 3 - iter 116/292 - loss 0.10105352 - time (sec): 5.31 - samples/sec: 3517.62 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-25 21:30:43,751 epoch 3 - iter 145/292 - loss 0.10094429 - time (sec): 6.62 - samples/sec: 3495.48 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-25 21:30:45,016 epoch 3 - iter 174/292 - loss 0.09645934 - time (sec): 7.88 - samples/sec: 3441.59 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-25 21:30:46,488 epoch 3 - iter 203/292 - loss 0.09398874 - time (sec): 9.35 - samples/sec: 3382.73 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-25 21:30:47,737 epoch 3 - iter 232/292 - loss 0.09314091 - time (sec): 10.60 - samples/sec: 3308.62 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-25 21:30:49,070 epoch 3 - iter 261/292 - loss 0.09176423 - time (sec): 11.93 - samples/sec: 3358.99 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-25 21:30:50,363 epoch 3 - iter 290/292 - loss 0.09054539 - time (sec): 13.23 - samples/sec: 3342.94 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-25 21:30:50,450 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 21:30:50,450 EPOCH 3 done: loss 0.0913 - lr: 0.000023
|
120 |
+
2023-10-25 21:30:51,361 DEV : loss 0.11841346323490143 - f1-score (micro avg) 0.7118
|
121 |
+
2023-10-25 21:30:51,365 saving best model
|
122 |
+
2023-10-25 21:30:52,005 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 21:30:53,266 epoch 4 - iter 29/292 - loss 0.06571735 - time (sec): 1.26 - samples/sec: 3370.24 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-25 21:30:54,598 epoch 4 - iter 58/292 - loss 0.05780459 - time (sec): 2.59 - samples/sec: 3250.20 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-25 21:30:55,965 epoch 4 - iter 87/292 - loss 0.05216866 - time (sec): 3.96 - samples/sec: 3297.12 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-25 21:30:57,257 epoch 4 - iter 116/292 - loss 0.04928450 - time (sec): 5.25 - samples/sec: 3238.11 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-25 21:30:58,611 epoch 4 - iter 145/292 - loss 0.05174887 - time (sec): 6.60 - samples/sec: 3421.02 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-25 21:30:59,914 epoch 4 - iter 174/292 - loss 0.05349774 - time (sec): 7.91 - samples/sec: 3465.27 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-25 21:31:01,321 epoch 4 - iter 203/292 - loss 0.05412245 - time (sec): 9.31 - samples/sec: 3411.38 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-25 21:31:02,580 epoch 4 - iter 232/292 - loss 0.05878785 - time (sec): 10.57 - samples/sec: 3383.60 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-25 21:31:03,967 epoch 4 - iter 261/292 - loss 0.06009869 - time (sec): 11.96 - samples/sec: 3381.49 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-25 21:31:05,232 epoch 4 - iter 290/292 - loss 0.05847457 - time (sec): 13.22 - samples/sec: 3342.38 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-25 21:31:05,312 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 21:31:05,312 EPOCH 4 done: loss 0.0583 - lr: 0.000020
|
135 |
+
2023-10-25 21:31:06,226 DEV : loss 0.13698235154151917 - f1-score (micro avg) 0.7329
|
136 |
+
2023-10-25 21:31:06,231 saving best model
|
137 |
+
2023-10-25 21:31:06,849 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-25 21:31:08,165 epoch 5 - iter 29/292 - loss 0.03972724 - time (sec): 1.31 - samples/sec: 3464.93 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-25 21:31:09,448 epoch 5 - iter 58/292 - loss 0.03798626 - time (sec): 2.60 - samples/sec: 3365.39 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-25 21:31:10,783 epoch 5 - iter 87/292 - loss 0.03555398 - time (sec): 3.93 - samples/sec: 3314.51 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-25 21:31:12,032 epoch 5 - iter 116/292 - loss 0.03214301 - time (sec): 5.18 - samples/sec: 3360.42 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-25 21:31:13,311 epoch 5 - iter 145/292 - loss 0.03292483 - time (sec): 6.46 - samples/sec: 3385.15 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-25 21:31:14,600 epoch 5 - iter 174/292 - loss 0.03681121 - time (sec): 7.75 - samples/sec: 3329.04 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-25 21:31:15,983 epoch 5 - iter 203/292 - loss 0.03818340 - time (sec): 9.13 - samples/sec: 3327.67 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-25 21:31:17,283 epoch 5 - iter 232/292 - loss 0.04048615 - time (sec): 10.43 - samples/sec: 3412.34 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-25 21:31:18,581 epoch 5 - iter 261/292 - loss 0.04033068 - time (sec): 11.73 - samples/sec: 3414.90 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-25 21:31:19,822 epoch 5 - iter 290/292 - loss 0.03959189 - time (sec): 12.97 - samples/sec: 3415.07 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-25 21:31:19,897 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-25 21:31:19,897 EPOCH 5 done: loss 0.0395 - lr: 0.000017
|
150 |
+
2023-10-25 21:31:20,805 DEV : loss 0.14024661481380463 - f1-score (micro avg) 0.7364
|
151 |
+
2023-10-25 21:31:20,809 saving best model
|
152 |
+
2023-10-25 21:31:21,435 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-25 21:31:22,752 epoch 6 - iter 29/292 - loss 0.02545293 - time (sec): 1.31 - samples/sec: 3771.70 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-25 21:31:24,050 epoch 6 - iter 58/292 - loss 0.03242435 - time (sec): 2.61 - samples/sec: 3433.27 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-25 21:31:25,321 epoch 6 - iter 87/292 - loss 0.02375022 - time (sec): 3.88 - samples/sec: 3488.35 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-25 21:31:26,643 epoch 6 - iter 116/292 - loss 0.03110057 - time (sec): 5.20 - samples/sec: 3502.60 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-25 21:31:27,915 epoch 6 - iter 145/292 - loss 0.03115742 - time (sec): 6.48 - samples/sec: 3503.77 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-25 21:31:29,157 epoch 6 - iter 174/292 - loss 0.03002770 - time (sec): 7.72 - samples/sec: 3510.24 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-25 21:31:30,359 epoch 6 - iter 203/292 - loss 0.02977686 - time (sec): 8.92 - samples/sec: 3488.79 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-25 21:31:31,596 epoch 6 - iter 232/292 - loss 0.02910083 - time (sec): 10.16 - samples/sec: 3471.29 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-25 21:31:32,922 epoch 6 - iter 261/292 - loss 0.02814018 - time (sec): 11.48 - samples/sec: 3472.71 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-25 21:31:34,133 epoch 6 - iter 290/292 - loss 0.02750245 - time (sec): 12.69 - samples/sec: 3462.82 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-25 21:31:34,216 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-25 21:31:34,216 EPOCH 6 done: loss 0.0275 - lr: 0.000013
|
165 |
+
2023-10-25 21:31:35,136 DEV : loss 0.1627625823020935 - f1-score (micro avg) 0.7527
|
166 |
+
2023-10-25 21:31:35,140 saving best model
|
167 |
+
2023-10-25 21:31:35,751 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-25 21:31:36,998 epoch 7 - iter 29/292 - loss 0.02550245 - time (sec): 1.24 - samples/sec: 3912.23 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-25 21:31:38,272 epoch 7 - iter 58/292 - loss 0.03222503 - time (sec): 2.52 - samples/sec: 3887.60 - lr: 0.000013 - momentum: 0.000000
|
170 |
+
2023-10-25 21:31:39,460 epoch 7 - iter 87/292 - loss 0.03168046 - time (sec): 3.70 - samples/sec: 3733.03 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-25 21:31:40,677 epoch 7 - iter 116/292 - loss 0.02908034 - time (sec): 4.92 - samples/sec: 3612.53 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-25 21:31:41,881 epoch 7 - iter 145/292 - loss 0.02514753 - time (sec): 6.13 - samples/sec: 3542.89 - lr: 0.000012 - momentum: 0.000000
|
173 |
+
2023-10-25 21:31:43,238 epoch 7 - iter 174/292 - loss 0.02468695 - time (sec): 7.48 - samples/sec: 3553.75 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-25 21:31:44,537 epoch 7 - iter 203/292 - loss 0.02340193 - time (sec): 8.78 - samples/sec: 3551.40 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-25 21:31:45,809 epoch 7 - iter 232/292 - loss 0.02228458 - time (sec): 10.05 - samples/sec: 3510.36 - lr: 0.000011 - momentum: 0.000000
|
176 |
+
2023-10-25 21:31:47,167 epoch 7 - iter 261/292 - loss 0.02091578 - time (sec): 11.41 - samples/sec: 3473.34 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-25 21:31:48,521 epoch 7 - iter 290/292 - loss 0.02054549 - time (sec): 12.77 - samples/sec: 3470.06 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-25 21:31:48,612 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-25 21:31:48,612 EPOCH 7 done: loss 0.0205 - lr: 0.000010
|
180 |
+
2023-10-25 21:31:49,536 DEV : loss 0.18406300246715546 - f1-score (micro avg) 0.7638
|
181 |
+
2023-10-25 21:31:49,540 saving best model
|
182 |
+
2023-10-25 21:31:50,152 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-25 21:31:51,534 epoch 8 - iter 29/292 - loss 0.01278755 - time (sec): 1.38 - samples/sec: 3174.63 - lr: 0.000010 - momentum: 0.000000
|
184 |
+
2023-10-25 21:31:52,890 epoch 8 - iter 58/292 - loss 0.01502218 - time (sec): 2.73 - samples/sec: 3230.30 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-25 21:31:54,205 epoch 8 - iter 87/292 - loss 0.01162352 - time (sec): 4.05 - samples/sec: 3323.36 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-25 21:31:55,489 epoch 8 - iter 116/292 - loss 0.01556603 - time (sec): 5.33 - samples/sec: 3302.90 - lr: 0.000009 - momentum: 0.000000
|
187 |
+
2023-10-25 21:31:56,784 epoch 8 - iter 145/292 - loss 0.01579903 - time (sec): 6.63 - samples/sec: 3285.94 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-25 21:31:58,212 epoch 8 - iter 174/292 - loss 0.01669043 - time (sec): 8.06 - samples/sec: 3226.30 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-25 21:31:59,482 epoch 8 - iter 203/292 - loss 0.01521658 - time (sec): 9.33 - samples/sec: 3184.00 - lr: 0.000008 - momentum: 0.000000
|
190 |
+
2023-10-25 21:32:00,800 epoch 8 - iter 232/292 - loss 0.01518710 - time (sec): 10.64 - samples/sec: 3210.18 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-25 21:32:02,092 epoch 8 - iter 261/292 - loss 0.01451772 - time (sec): 11.94 - samples/sec: 3264.25 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-25 21:32:03,464 epoch 8 - iter 290/292 - loss 0.01550935 - time (sec): 13.31 - samples/sec: 3323.97 - lr: 0.000007 - momentum: 0.000000
|
193 |
+
2023-10-25 21:32:03,551 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-25 21:32:03,552 EPOCH 8 done: loss 0.0156 - lr: 0.000007
|
195 |
+
2023-10-25 21:32:04,457 DEV : loss 0.18133316934108734 - f1-score (micro avg) 0.7489
|
196 |
+
2023-10-25 21:32:04,462 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-25 21:32:05,828 epoch 9 - iter 29/292 - loss 0.00469478 - time (sec): 1.36 - samples/sec: 3658.24 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-25 21:32:07,078 epoch 9 - iter 58/292 - loss 0.00939010 - time (sec): 2.61 - samples/sec: 3544.28 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-25 21:32:08,353 epoch 9 - iter 87/292 - loss 0.00915593 - time (sec): 3.89 - samples/sec: 3555.78 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-25 21:32:09,712 epoch 9 - iter 116/292 - loss 0.01207961 - time (sec): 5.25 - samples/sec: 3529.11 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-25 21:32:11,030 epoch 9 - iter 145/292 - loss 0.01222517 - time (sec): 6.57 - samples/sec: 3493.57 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-25 21:32:12,307 epoch 9 - iter 174/292 - loss 0.01195187 - time (sec): 7.84 - samples/sec: 3478.22 - lr: 0.000005 - momentum: 0.000000
|
203 |
+
2023-10-25 21:32:13,584 epoch 9 - iter 203/292 - loss 0.01115930 - time (sec): 9.12 - samples/sec: 3479.08 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-10-25 21:32:14,839 epoch 9 - iter 232/292 - loss 0.01057009 - time (sec): 10.38 - samples/sec: 3434.42 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-25 21:32:16,163 epoch 9 - iter 261/292 - loss 0.01094290 - time (sec): 11.70 - samples/sec: 3384.80 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-25 21:32:17,540 epoch 9 - iter 290/292 - loss 0.01034591 - time (sec): 13.08 - samples/sec: 3376.60 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-10-25 21:32:17,632 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-25 21:32:17,632 EPOCH 9 done: loss 0.0103 - lr: 0.000003
|
209 |
+
2023-10-25 21:32:18,549 DEV : loss 0.1857309192419052 - f1-score (micro avg) 0.7461
|
210 |
+
2023-10-25 21:32:18,553 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-25 21:32:19,857 epoch 10 - iter 29/292 - loss 0.00833025 - time (sec): 1.30 - samples/sec: 3353.71 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-25 21:32:21,159 epoch 10 - iter 58/292 - loss 0.00620856 - time (sec): 2.60 - samples/sec: 3160.18 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-25 21:32:22,448 epoch 10 - iter 87/292 - loss 0.01250990 - time (sec): 3.89 - samples/sec: 3177.17 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-25 21:32:23,642 epoch 10 - iter 116/292 - loss 0.01078091 - time (sec): 5.09 - samples/sec: 3278.69 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-25 21:32:24,940 epoch 10 - iter 145/292 - loss 0.00880841 - time (sec): 6.39 - samples/sec: 3371.71 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-25 21:32:26,129 epoch 10 - iter 174/292 - loss 0.00884157 - time (sec): 7.57 - samples/sec: 3418.33 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-25 21:32:27,383 epoch 10 - iter 203/292 - loss 0.00866918 - time (sec): 8.83 - samples/sec: 3498.88 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-25 21:32:28,613 epoch 10 - iter 232/292 - loss 0.00812226 - time (sec): 10.06 - samples/sec: 3493.63 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-25 21:32:29,859 epoch 10 - iter 261/292 - loss 0.00777060 - time (sec): 11.30 - samples/sec: 3510.22 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-25 21:32:31,235 epoch 10 - iter 290/292 - loss 0.00767455 - time (sec): 12.68 - samples/sec: 3490.79 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-25 21:32:31,323 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-25 21:32:31,323 EPOCH 10 done: loss 0.0084 - lr: 0.000000
|
223 |
+
2023-10-25 21:32:32,251 DEV : loss 0.1949864774942398 - f1-score (micro avg) 0.7571
|
224 |
+
2023-10-25 21:32:32,724 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-25 21:32:32,725 Loading model from best epoch ...
|
226 |
+
2023-10-25 21:32:34,339 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
227 |
+
2023-10-25 21:32:35,859
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.7648
|
230 |
+
- F-score (macro) 0.6948
|
231 |
+
- Accuracy 0.6424
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
PER 0.8187 0.8305 0.8245 348
|
237 |
+
LOC 0.6759 0.8391 0.7487 261
|
238 |
+
ORG 0.4583 0.4231 0.4400 52
|
239 |
+
HumanProd 0.7200 0.8182 0.7660 22
|
240 |
+
|
241 |
+
micro avg 0.7307 0.8023 0.7648 683
|
242 |
+
macro avg 0.6682 0.7277 0.6948 683
|
243 |
+
weighted avg 0.7335 0.8023 0.7644 683
|
244 |
+
|
245 |
+
2023-10-25 21:32:35,859 ----------------------------------------------------------------------------------------------------
|