Upload ./training.log with huggingface_hub
Browse files- training.log +504 -0
training.log
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 12:56:32,932 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 12:56:32,933 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 12:56:32,933 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 12:56:32,934 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
317 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 12:56:32,934 Train: 14465 sentences
|
319 |
+
2023-10-25 12:56:32,934 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 12:56:32,934 Training Params:
|
322 |
+
2023-10-25 12:56:32,934 - learning_rate: "5e-05"
|
323 |
+
2023-10-25 12:56:32,934 - mini_batch_size: "8"
|
324 |
+
2023-10-25 12:56:32,934 - max_epochs: "10"
|
325 |
+
2023-10-25 12:56:32,934 - shuffle: "True"
|
326 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 12:56:32,934 Plugins:
|
328 |
+
2023-10-25 12:56:32,934 - TensorboardLogger
|
329 |
+
2023-10-25 12:56:32,934 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 12:56:32,934 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 12:56:32,934 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 12:56:32,934 Computation:
|
335 |
+
2023-10-25 12:56:32,934 - compute on device: cuda:0
|
336 |
+
2023-10-25 12:56:32,934 - embedding storage: none
|
337 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 12:56:32,934 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 12:56:32,934 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 12:56:32,934 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 12:56:48,346 epoch 1 - iter 180/1809 - loss 1.10006084 - time (sec): 15.41 - samples/sec: 2402.62 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-25 12:57:04,474 epoch 1 - iter 360/1809 - loss 0.63052655 - time (sec): 31.54 - samples/sec: 2436.05 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-25 12:57:20,154 epoch 1 - iter 540/1809 - loss 0.47100990 - time (sec): 47.22 - samples/sec: 2427.01 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-25 12:57:35,999 epoch 1 - iter 720/1809 - loss 0.38400724 - time (sec): 63.06 - samples/sec: 2427.43 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-25 12:57:51,832 epoch 1 - iter 900/1809 - loss 0.33257800 - time (sec): 78.90 - samples/sec: 2412.15 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-25 12:58:07,695 epoch 1 - iter 1080/1809 - loss 0.29578277 - time (sec): 94.76 - samples/sec: 2405.28 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-25 12:58:23,282 epoch 1 - iter 1260/1809 - loss 0.26811077 - time (sec): 110.35 - samples/sec: 2407.63 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-25 12:58:39,159 epoch 1 - iter 1440/1809 - loss 0.24867204 - time (sec): 126.22 - samples/sec: 2401.15 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-25 12:58:54,972 epoch 1 - iter 1620/1809 - loss 0.23254968 - time (sec): 142.04 - samples/sec: 2394.45 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-25 12:59:10,963 epoch 1 - iter 1800/1809 - loss 0.21944741 - time (sec): 158.03 - samples/sec: 2393.36 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-25 12:59:11,727 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 12:59:11,727 EPOCH 1 done: loss 0.2190 - lr: 0.000050
|
354 |
+
2023-10-25 12:59:16,227 DEV : loss 0.0940776988863945 - f1-score (micro avg) 0.5283
|
355 |
+
2023-10-25 12:59:16,250 saving best model
|
356 |
+
2023-10-25 12:59:16,804 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 12:59:32,156 epoch 2 - iter 180/1809 - loss 0.07972278 - time (sec): 15.35 - samples/sec: 2377.73 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-25 12:59:48,323 epoch 2 - iter 360/1809 - loss 0.08152052 - time (sec): 31.52 - samples/sec: 2340.68 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-25 13:00:04,570 epoch 2 - iter 540/1809 - loss 0.08505170 - time (sec): 47.77 - samples/sec: 2366.58 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-25 13:00:20,330 epoch 2 - iter 720/1809 - loss 0.08594619 - time (sec): 63.53 - samples/sec: 2376.02 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-25 13:00:36,207 epoch 2 - iter 900/1809 - loss 0.08806352 - time (sec): 79.40 - samples/sec: 2380.43 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-25 13:00:51,928 epoch 2 - iter 1080/1809 - loss 0.08857237 - time (sec): 95.12 - samples/sec: 2379.41 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-25 13:01:07,495 epoch 2 - iter 1260/1809 - loss 0.08718027 - time (sec): 110.69 - samples/sec: 2386.51 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-25 13:01:23,189 epoch 2 - iter 1440/1809 - loss 0.08666178 - time (sec): 126.38 - samples/sec: 2392.20 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-25 13:01:38,806 epoch 2 - iter 1620/1809 - loss 0.08537196 - time (sec): 142.00 - samples/sec: 2395.91 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-25 13:01:55,003 epoch 2 - iter 1800/1809 - loss 0.08624945 - time (sec): 158.20 - samples/sec: 2390.41 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-25 13:01:55,826 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 13:01:55,826 EPOCH 2 done: loss 0.0862 - lr: 0.000044
|
369 |
+
2023-10-25 13:02:01,076 DEV : loss 0.13432565331459045 - f1-score (micro avg) 0.6025
|
370 |
+
2023-10-25 13:02:01,098 saving best model
|
371 |
+
2023-10-25 13:02:01,754 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 13:02:17,323 epoch 3 - iter 180/1809 - loss 0.05779259 - time (sec): 15.57 - samples/sec: 2359.77 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-25 13:02:33,718 epoch 3 - iter 360/1809 - loss 0.05644142 - time (sec): 31.96 - samples/sec: 2360.99 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-25 13:02:49,700 epoch 3 - iter 540/1809 - loss 0.06025166 - time (sec): 47.94 - samples/sec: 2376.32 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-25 13:03:05,515 epoch 3 - iter 720/1809 - loss 0.05963981 - time (sec): 63.76 - samples/sec: 2398.85 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-25 13:03:21,210 epoch 3 - iter 900/1809 - loss 0.05988365 - time (sec): 79.45 - samples/sec: 2391.83 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-25 13:03:37,246 epoch 3 - iter 1080/1809 - loss 0.06110576 - time (sec): 95.49 - samples/sec: 2395.55 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-25 13:03:53,081 epoch 3 - iter 1260/1809 - loss 0.05959679 - time (sec): 111.33 - samples/sec: 2397.88 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-25 13:04:08,904 epoch 3 - iter 1440/1809 - loss 0.05990670 - time (sec): 127.15 - samples/sec: 2392.99 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-25 13:04:24,144 epoch 3 - iter 1620/1809 - loss 0.05964992 - time (sec): 142.39 - samples/sec: 2380.45 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-25 13:04:40,347 epoch 3 - iter 1800/1809 - loss 0.06114775 - time (sec): 158.59 - samples/sec: 2382.72 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-25 13:04:41,213 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 13:04:41,213 EPOCH 3 done: loss 0.0611 - lr: 0.000039
|
384 |
+
2023-10-25 13:04:46,486 DEV : loss 0.1459859311580658 - f1-score (micro avg) 0.6574
|
385 |
+
2023-10-25 13:04:46,509 saving best model
|
386 |
+
2023-10-25 13:04:47,256 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-25 13:05:03,087 epoch 4 - iter 180/1809 - loss 0.03569500 - time (sec): 15.83 - samples/sec: 2388.59 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-25 13:05:18,721 epoch 4 - iter 360/1809 - loss 0.03919591 - time (sec): 31.46 - samples/sec: 2389.76 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-25 13:05:34,881 epoch 4 - iter 540/1809 - loss 0.04102332 - time (sec): 47.62 - samples/sec: 2380.28 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-25 13:05:50,661 epoch 4 - iter 720/1809 - loss 0.04009188 - time (sec): 63.40 - samples/sec: 2377.07 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-25 13:06:06,635 epoch 4 - iter 900/1809 - loss 0.04101052 - time (sec): 79.38 - samples/sec: 2383.76 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-25 13:06:22,324 epoch 4 - iter 1080/1809 - loss 0.04250899 - time (sec): 95.07 - samples/sec: 2389.95 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-25 13:06:37,963 epoch 4 - iter 1260/1809 - loss 0.04333909 - time (sec): 110.71 - samples/sec: 2386.49 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-25 13:06:53,854 epoch 4 - iter 1440/1809 - loss 0.04374822 - time (sec): 126.60 - samples/sec: 2380.16 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-25 13:07:09,575 epoch 4 - iter 1620/1809 - loss 0.04432814 - time (sec): 142.32 - samples/sec: 2380.91 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-25 13:07:25,700 epoch 4 - iter 1800/1809 - loss 0.04524228 - time (sec): 158.44 - samples/sec: 2383.85 - lr: 0.000033 - momentum: 0.000000
|
397 |
+
2023-10-25 13:07:26,573 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-25 13:07:26,573 EPOCH 4 done: loss 0.0451 - lr: 0.000033
|
399 |
+
2023-10-25 13:07:31,848 DEV : loss 0.20192305743694305 - f1-score (micro avg) 0.6289
|
400 |
+
2023-10-25 13:07:31,871 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-25 13:07:47,452 epoch 5 - iter 180/1809 - loss 0.02734931 - time (sec): 15.58 - samples/sec: 2412.22 - lr: 0.000033 - momentum: 0.000000
|
402 |
+
2023-10-25 13:08:03,819 epoch 5 - iter 360/1809 - loss 0.02324021 - time (sec): 31.95 - samples/sec: 2392.25 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-25 13:08:19,580 epoch 5 - iter 540/1809 - loss 0.02650141 - time (sec): 47.71 - samples/sec: 2403.80 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-25 13:08:35,226 epoch 5 - iter 720/1809 - loss 0.02704811 - time (sec): 63.35 - samples/sec: 2417.63 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-25 13:08:51,415 epoch 5 - iter 900/1809 - loss 0.02877765 - time (sec): 79.54 - samples/sec: 2406.90 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-25 13:09:07,224 epoch 5 - iter 1080/1809 - loss 0.02961531 - time (sec): 95.35 - samples/sec: 2400.83 - lr: 0.000030 - momentum: 0.000000
|
407 |
+
2023-10-25 13:09:23,022 epoch 5 - iter 1260/1809 - loss 0.02938927 - time (sec): 111.15 - samples/sec: 2396.43 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-25 13:09:38,603 epoch 5 - iter 1440/1809 - loss 0.02946213 - time (sec): 126.73 - samples/sec: 2401.26 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2023-10-25 13:09:54,292 epoch 5 - iter 1620/1809 - loss 0.02947805 - time (sec): 142.42 - samples/sec: 2396.84 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-25 13:10:10,223 epoch 5 - iter 1800/1809 - loss 0.02955292 - time (sec): 158.35 - samples/sec: 2389.40 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-25 13:10:10,953 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-25 13:10:10,953 EPOCH 5 done: loss 0.0295 - lr: 0.000028
|
413 |
+
2023-10-25 13:10:15,727 DEV : loss 0.2949555218219757 - f1-score (micro avg) 0.6355
|
414 |
+
2023-10-25 13:10:15,750 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-25 13:10:31,928 epoch 6 - iter 180/1809 - loss 0.01655256 - time (sec): 16.18 - samples/sec: 2405.34 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-25 13:10:47,816 epoch 6 - iter 360/1809 - loss 0.01946603 - time (sec): 32.07 - samples/sec: 2373.06 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-25 13:11:03,540 epoch 6 - iter 540/1809 - loss 0.01771531 - time (sec): 47.79 - samples/sec: 2366.90 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-25 13:11:19,762 epoch 6 - iter 720/1809 - loss 0.01794652 - time (sec): 64.01 - samples/sec: 2376.16 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-25 13:11:35,513 epoch 6 - iter 900/1809 - loss 0.01902434 - time (sec): 79.76 - samples/sec: 2373.75 - lr: 0.000025 - momentum: 0.000000
|
420 |
+
2023-10-25 13:11:51,427 epoch 6 - iter 1080/1809 - loss 0.01867401 - time (sec): 95.68 - samples/sec: 2377.37 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-25 13:12:07,127 epoch 6 - iter 1260/1809 - loss 0.01897470 - time (sec): 111.38 - samples/sec: 2382.57 - lr: 0.000024 - momentum: 0.000000
|
422 |
+
2023-10-25 13:12:23,192 epoch 6 - iter 1440/1809 - loss 0.01911851 - time (sec): 127.44 - samples/sec: 2384.79 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-25 13:12:39,025 epoch 6 - iter 1620/1809 - loss 0.01999373 - time (sec): 143.27 - samples/sec: 2382.18 - lr: 0.000023 - momentum: 0.000000
|
424 |
+
2023-10-25 13:12:54,521 epoch 6 - iter 1800/1809 - loss 0.01982448 - time (sec): 158.77 - samples/sec: 2381.69 - lr: 0.000022 - momentum: 0.000000
|
425 |
+
2023-10-25 13:12:55,269 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-25 13:12:55,269 EPOCH 6 done: loss 0.0198 - lr: 0.000022
|
427 |
+
2023-10-25 13:13:00,034 DEV : loss 0.347699373960495 - f1-score (micro avg) 0.6493
|
428 |
+
2023-10-25 13:13:00,057 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-25 13:13:15,623 epoch 7 - iter 180/1809 - loss 0.01012341 - time (sec): 15.57 - samples/sec: 2404.35 - lr: 0.000022 - momentum: 0.000000
|
430 |
+
2023-10-25 13:13:31,454 epoch 7 - iter 360/1809 - loss 0.01305697 - time (sec): 31.40 - samples/sec: 2373.59 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-25 13:13:47,017 epoch 7 - iter 540/1809 - loss 0.01300877 - time (sec): 46.96 - samples/sec: 2377.11 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-25 13:14:02,889 epoch 7 - iter 720/1809 - loss 0.01389528 - time (sec): 62.83 - samples/sec: 2376.06 - lr: 0.000020 - momentum: 0.000000
|
433 |
+
2023-10-25 13:14:18,735 epoch 7 - iter 900/1809 - loss 0.01408907 - time (sec): 78.68 - samples/sec: 2375.30 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-25 13:14:34,859 epoch 7 - iter 1080/1809 - loss 0.01370295 - time (sec): 94.80 - samples/sec: 2382.48 - lr: 0.000019 - momentum: 0.000000
|
435 |
+
2023-10-25 13:14:50,754 epoch 7 - iter 1260/1809 - loss 0.01366540 - time (sec): 110.70 - samples/sec: 2392.99 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-25 13:15:06,865 epoch 7 - iter 1440/1809 - loss 0.01400641 - time (sec): 126.81 - samples/sec: 2390.49 - lr: 0.000018 - momentum: 0.000000
|
437 |
+
2023-10-25 13:15:22,780 epoch 7 - iter 1620/1809 - loss 0.01385209 - time (sec): 142.72 - samples/sec: 2385.21 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-25 13:15:38,684 epoch 7 - iter 1800/1809 - loss 0.01412168 - time (sec): 158.63 - samples/sec: 2383.30 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-25 13:15:39,407 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-25 13:15:39,408 EPOCH 7 done: loss 0.0141 - lr: 0.000017
|
441 |
+
2023-10-25 13:15:44,698 DEV : loss 0.35314860939979553 - f1-score (micro avg) 0.6557
|
442 |
+
2023-10-25 13:15:44,721 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-25 13:16:00,867 epoch 8 - iter 180/1809 - loss 0.01022784 - time (sec): 16.14 - samples/sec: 2412.56 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-25 13:16:17,042 epoch 8 - iter 360/1809 - loss 0.01058094 - time (sec): 32.32 - samples/sec: 2352.04 - lr: 0.000016 - momentum: 0.000000
|
445 |
+
2023-10-25 13:16:33,062 epoch 8 - iter 540/1809 - loss 0.01011424 - time (sec): 48.34 - samples/sec: 2361.84 - lr: 0.000015 - momentum: 0.000000
|
446 |
+
2023-10-25 13:16:49,047 epoch 8 - iter 720/1809 - loss 0.00966851 - time (sec): 64.32 - samples/sec: 2375.94 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-25 13:17:04,894 epoch 8 - iter 900/1809 - loss 0.00933864 - time (sec): 80.17 - samples/sec: 2376.95 - lr: 0.000014 - momentum: 0.000000
|
448 |
+
2023-10-25 13:17:20,529 epoch 8 - iter 1080/1809 - loss 0.00951050 - time (sec): 95.81 - samples/sec: 2364.76 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-25 13:17:36,142 epoch 8 - iter 1260/1809 - loss 0.00966767 - time (sec): 111.42 - samples/sec: 2370.92 - lr: 0.000013 - momentum: 0.000000
|
450 |
+
2023-10-25 13:17:52,143 epoch 8 - iter 1440/1809 - loss 0.00962221 - time (sec): 127.42 - samples/sec: 2379.62 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-25 13:18:07,519 epoch 8 - iter 1620/1809 - loss 0.00957778 - time (sec): 142.80 - samples/sec: 2379.27 - lr: 0.000012 - momentum: 0.000000
|
452 |
+
2023-10-25 13:18:23,395 epoch 8 - iter 1800/1809 - loss 0.00960260 - time (sec): 158.67 - samples/sec: 2382.90 - lr: 0.000011 - momentum: 0.000000
|
453 |
+
2023-10-25 13:18:24,169 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-25 13:18:24,169 EPOCH 8 done: loss 0.0096 - lr: 0.000011
|
455 |
+
2023-10-25 13:18:29,463 DEV : loss 0.4076786935329437 - f1-score (micro avg) 0.6491
|
456 |
+
2023-10-25 13:18:29,486 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-25 13:18:44,946 epoch 9 - iter 180/1809 - loss 0.00346298 - time (sec): 15.46 - samples/sec: 2391.49 - lr: 0.000011 - momentum: 0.000000
|
458 |
+
2023-10-25 13:19:01,070 epoch 9 - iter 360/1809 - loss 0.00386564 - time (sec): 31.58 - samples/sec: 2399.66 - lr: 0.000010 - momentum: 0.000000
|
459 |
+
2023-10-25 13:19:16,951 epoch 9 - iter 540/1809 - loss 0.00562997 - time (sec): 47.46 - samples/sec: 2400.68 - lr: 0.000009 - momentum: 0.000000
|
460 |
+
2023-10-25 13:19:32,422 epoch 9 - iter 720/1809 - loss 0.00546924 - time (sec): 62.94 - samples/sec: 2394.18 - lr: 0.000009 - momentum: 0.000000
|
461 |
+
2023-10-25 13:19:48,301 epoch 9 - iter 900/1809 - loss 0.00581289 - time (sec): 78.81 - samples/sec: 2392.02 - lr: 0.000008 - momentum: 0.000000
|
462 |
+
2023-10-25 13:20:04,825 epoch 9 - iter 1080/1809 - loss 0.00611858 - time (sec): 95.34 - samples/sec: 2384.94 - lr: 0.000008 - momentum: 0.000000
|
463 |
+
2023-10-25 13:20:21,183 epoch 9 - iter 1260/1809 - loss 0.00643895 - time (sec): 111.70 - samples/sec: 2378.78 - lr: 0.000007 - momentum: 0.000000
|
464 |
+
2023-10-25 13:20:37,254 epoch 9 - iter 1440/1809 - loss 0.00648270 - time (sec): 127.77 - samples/sec: 2383.17 - lr: 0.000007 - momentum: 0.000000
|
465 |
+
2023-10-25 13:20:52,352 epoch 9 - iter 1620/1809 - loss 0.00637081 - time (sec): 142.86 - samples/sec: 2377.49 - lr: 0.000006 - momentum: 0.000000
|
466 |
+
2023-10-25 13:21:08,288 epoch 9 - iter 1800/1809 - loss 0.00619420 - time (sec): 158.80 - samples/sec: 2382.08 - lr: 0.000006 - momentum: 0.000000
|
467 |
+
2023-10-25 13:21:09,058 ----------------------------------------------------------------------------------------------------
|
468 |
+
2023-10-25 13:21:09,058 EPOCH 9 done: loss 0.0062 - lr: 0.000006
|
469 |
+
2023-10-25 13:21:14,367 DEV : loss 0.4059355556964874 - f1-score (micro avg) 0.6474
|
470 |
+
2023-10-25 13:21:14,390 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-25 13:21:30,210 epoch 10 - iter 180/1809 - loss 0.00238887 - time (sec): 15.82 - samples/sec: 2406.56 - lr: 0.000005 - momentum: 0.000000
|
472 |
+
2023-10-25 13:21:45,960 epoch 10 - iter 360/1809 - loss 0.00251156 - time (sec): 31.57 - samples/sec: 2405.41 - lr: 0.000004 - momentum: 0.000000
|
473 |
+
2023-10-25 13:22:01,793 epoch 10 - iter 540/1809 - loss 0.00290608 - time (sec): 47.40 - samples/sec: 2395.50 - lr: 0.000004 - momentum: 0.000000
|
474 |
+
2023-10-25 13:22:17,530 epoch 10 - iter 720/1809 - loss 0.00315655 - time (sec): 63.14 - samples/sec: 2387.64 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-25 13:22:33,117 epoch 10 - iter 900/1809 - loss 0.00334403 - time (sec): 78.73 - samples/sec: 2379.43 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-25 13:22:48,770 epoch 10 - iter 1080/1809 - loss 0.00312517 - time (sec): 94.38 - samples/sec: 2380.87 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-25 13:23:04,901 epoch 10 - iter 1260/1809 - loss 0.00323274 - time (sec): 110.51 - samples/sec: 2383.07 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-25 13:23:21,257 epoch 10 - iter 1440/1809 - loss 0.00317762 - time (sec): 126.87 - samples/sec: 2385.06 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-25 13:23:37,428 epoch 10 - iter 1620/1809 - loss 0.00332409 - time (sec): 143.04 - samples/sec: 2383.07 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-25 13:23:52,987 epoch 10 - iter 1800/1809 - loss 0.00349659 - time (sec): 158.60 - samples/sec: 2384.70 - lr: 0.000000 - momentum: 0.000000
|
481 |
+
2023-10-25 13:23:53,696 ----------------------------------------------------------------------------------------------------
|
482 |
+
2023-10-25 13:23:53,697 EPOCH 10 done: loss 0.0035 - lr: 0.000000
|
483 |
+
2023-10-25 13:23:59,011 DEV : loss 0.4234822392463684 - f1-score (micro avg) 0.6419
|
484 |
+
2023-10-25 13:23:59,603 ----------------------------------------------------------------------------------------------------
|
485 |
+
2023-10-25 13:23:59,604 Loading model from best epoch ...
|
486 |
+
2023-10-25 13:24:01,370 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
487 |
+
2023-10-25 13:24:07,107
|
488 |
+
Results:
|
489 |
+
- F-score (micro) 0.6591
|
490 |
+
- F-score (macro) 0.4663
|
491 |
+
- Accuracy 0.5014
|
492 |
+
|
493 |
+
By class:
|
494 |
+
precision recall f1-score support
|
495 |
+
|
496 |
+
loc 0.6863 0.7479 0.7158 591
|
497 |
+
pers 0.5734 0.7115 0.6350 357
|
498 |
+
org 0.5000 0.0253 0.0482 79
|
499 |
+
|
500 |
+
micro avg 0.6398 0.6796 0.6591 1027
|
501 |
+
macro avg 0.5866 0.4949 0.4663 1027
|
502 |
+
weighted avg 0.6327 0.6796 0.6364 1027
|
503 |
+
|
504 |
+
2023-10-25 13:24:07,107 ----------------------------------------------------------------------------------------------------
|