stefan-it commited on
Commit
1cf512b
1 Parent(s): d651dab

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +503 -0
training.log ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-25 11:49:28,311 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-25 11:49:28,312 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-25 11:49:28,312 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
316
+ - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
317
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-25 11:49:28,312 Train: 14465 sentences
319
+ 2023-10-25 11:49:28,312 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-25 11:49:28,312 Training Params:
322
+ 2023-10-25 11:49:28,312 - learning_rate: "5e-05"
323
+ 2023-10-25 11:49:28,312 - mini_batch_size: "4"
324
+ 2023-10-25 11:49:28,312 - max_epochs: "10"
325
+ 2023-10-25 11:49:28,312 - shuffle: "True"
326
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-25 11:49:28,312 Plugins:
328
+ 2023-10-25 11:49:28,312 - TensorboardLogger
329
+ 2023-10-25 11:49:28,312 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-25 11:49:28,312 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-25 11:49:28,312 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-25 11:49:28,312 Computation:
335
+ 2023-10-25 11:49:28,312 - compute on device: cuda:0
336
+ 2023-10-25 11:49:28,312 - embedding storage: none
337
+ 2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-25 11:49:28,313 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
339
+ 2023-10-25 11:49:28,313 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-25 11:49:28,313 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-25 11:49:28,313 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-25 11:49:50,809 epoch 1 - iter 361/3617 - loss 0.86993127 - time (sec): 22.50 - samples/sec: 1710.07 - lr: 0.000005 - momentum: 0.000000
343
+ 2023-10-25 11:50:13,270 epoch 1 - iter 722/3617 - loss 0.52060995 - time (sec): 44.96 - samples/sec: 1692.19 - lr: 0.000010 - momentum: 0.000000
344
+ 2023-10-25 11:50:35,928 epoch 1 - iter 1083/3617 - loss 0.39422738 - time (sec): 67.61 - samples/sec: 1687.75 - lr: 0.000015 - momentum: 0.000000
345
+ 2023-10-25 11:50:58,635 epoch 1 - iter 1444/3617 - loss 0.32755860 - time (sec): 90.32 - samples/sec: 1677.54 - lr: 0.000020 - momentum: 0.000000
346
+ 2023-10-25 11:51:20,989 epoch 1 - iter 1805/3617 - loss 0.28743077 - time (sec): 112.68 - samples/sec: 1664.91 - lr: 0.000025 - momentum: 0.000000
347
+ 2023-10-25 11:51:43,571 epoch 1 - iter 2166/3617 - loss 0.25847487 - time (sec): 135.26 - samples/sec: 1665.35 - lr: 0.000030 - momentum: 0.000000
348
+ 2023-10-25 11:52:06,563 epoch 1 - iter 2527/3617 - loss 0.23733988 - time (sec): 158.25 - samples/sec: 1674.91 - lr: 0.000035 - momentum: 0.000000
349
+ 2023-10-25 11:52:29,326 epoch 1 - iter 2888/3617 - loss 0.22332063 - time (sec): 181.01 - samples/sec: 1678.95 - lr: 0.000040 - momentum: 0.000000
350
+ 2023-10-25 11:52:51,919 epoch 1 - iter 3249/3617 - loss 0.21156741 - time (sec): 203.61 - samples/sec: 1675.79 - lr: 0.000045 - momentum: 0.000000
351
+ 2023-10-25 11:53:14,580 epoch 1 - iter 3610/3617 - loss 0.20214765 - time (sec): 226.27 - samples/sec: 1676.00 - lr: 0.000050 - momentum: 0.000000
352
+ 2023-10-25 11:53:15,001 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-25 11:53:15,001 EPOCH 1 done: loss 0.2021 - lr: 0.000050
354
+ 2023-10-25 11:53:19,501 DEV : loss 0.14469869434833527 - f1-score (micro avg) 0.5759
355
+ 2023-10-25 11:53:19,522 saving best model
356
+ 2023-10-25 11:53:20,071 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-25 11:53:42,599 epoch 2 - iter 361/3617 - loss 0.10828242 - time (sec): 22.53 - samples/sec: 1681.04 - lr: 0.000049 - momentum: 0.000000
358
+ 2023-10-25 11:54:05,556 epoch 2 - iter 722/3617 - loss 0.11062343 - time (sec): 45.48 - samples/sec: 1692.62 - lr: 0.000049 - momentum: 0.000000
359
+ 2023-10-25 11:54:28,432 epoch 2 - iter 1083/3617 - loss 0.11343990 - time (sec): 68.36 - samples/sec: 1689.62 - lr: 0.000048 - momentum: 0.000000
360
+ 2023-10-25 11:54:51,191 epoch 2 - iter 1444/3617 - loss 0.11147450 - time (sec): 91.12 - samples/sec: 1693.49 - lr: 0.000048 - momentum: 0.000000
361
+ 2023-10-25 11:55:13,719 epoch 2 - iter 1805/3617 - loss 0.11268183 - time (sec): 113.65 - samples/sec: 1686.21 - lr: 0.000047 - momentum: 0.000000
362
+ 2023-10-25 11:55:36,251 epoch 2 - iter 2166/3617 - loss 0.11108706 - time (sec): 136.18 - samples/sec: 1685.34 - lr: 0.000047 - momentum: 0.000000
363
+ 2023-10-25 11:55:58,771 epoch 2 - iter 2527/3617 - loss 0.10962742 - time (sec): 158.70 - samples/sec: 1678.37 - lr: 0.000046 - momentum: 0.000000
364
+ 2023-10-25 11:56:21,330 epoch 2 - iter 2888/3617 - loss 0.10930890 - time (sec): 181.26 - samples/sec: 1677.39 - lr: 0.000046 - momentum: 0.000000
365
+ 2023-10-25 11:56:43,852 epoch 2 - iter 3249/3617 - loss 0.10745796 - time (sec): 203.78 - samples/sec: 1678.49 - lr: 0.000045 - momentum: 0.000000
366
+ 2023-10-25 11:57:06,613 epoch 2 - iter 3610/3617 - loss 0.10586077 - time (sec): 226.54 - samples/sec: 1673.92 - lr: 0.000044 - momentum: 0.000000
367
+ 2023-10-25 11:57:07,071 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-25 11:57:07,071 EPOCH 2 done: loss 0.1058 - lr: 0.000044
369
+ 2023-10-25 11:57:12,310 DEV : loss 0.14430101215839386 - f1-score (micro avg) 0.6079
370
+ 2023-10-25 11:57:12,332 saving best model
371
+ 2023-10-25 11:57:13,111 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-25 11:57:35,931 epoch 3 - iter 361/3617 - loss 0.07144153 - time (sec): 22.82 - samples/sec: 1734.60 - lr: 0.000044 - momentum: 0.000000
373
+ 2023-10-25 11:57:58,787 epoch 3 - iter 722/3617 - loss 0.08074855 - time (sec): 45.68 - samples/sec: 1719.95 - lr: 0.000043 - momentum: 0.000000
374
+ 2023-10-25 11:58:21,681 epoch 3 - iter 1083/3617 - loss 0.08263674 - time (sec): 68.57 - samples/sec: 1716.05 - lr: 0.000043 - momentum: 0.000000
375
+ 2023-10-25 11:58:44,087 epoch 3 - iter 1444/3617 - loss 0.08288668 - time (sec): 90.97 - samples/sec: 1695.55 - lr: 0.000042 - momentum: 0.000000
376
+ 2023-10-25 11:59:06,702 epoch 3 - iter 1805/3617 - loss 0.10363913 - time (sec): 113.59 - samples/sec: 1690.82 - lr: 0.000042 - momentum: 0.000000
377
+ 2023-10-25 11:59:29,167 epoch 3 - iter 2166/3617 - loss 0.13603267 - time (sec): 136.06 - samples/sec: 1683.24 - lr: 0.000041 - momentum: 0.000000
378
+ 2023-10-25 11:59:51,558 epoch 3 - iter 2527/3617 - loss 0.15873752 - time (sec): 158.45 - samples/sec: 1675.58 - lr: 0.000041 - momentum: 0.000000
379
+ 2023-10-25 12:00:14,538 epoch 3 - iter 2888/3617 - loss 0.17453687 - time (sec): 181.43 - samples/sec: 1674.80 - lr: 0.000040 - momentum: 0.000000
380
+ 2023-10-25 12:00:37,065 epoch 3 - iter 3249/3617 - loss 0.18855528 - time (sec): 203.95 - samples/sec: 1676.48 - lr: 0.000039 - momentum: 0.000000
381
+ 2023-10-25 12:00:59,529 epoch 3 - iter 3610/3617 - loss 0.20118879 - time (sec): 226.42 - samples/sec: 1675.07 - lr: 0.000039 - momentum: 0.000000
382
+ 2023-10-25 12:00:59,959 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-25 12:00:59,960 EPOCH 3 done: loss 0.2013 - lr: 0.000039
384
+ 2023-10-25 12:01:05,163 DEV : loss 0.2843758761882782 - f1-score (micro avg) 0.0046
385
+ 2023-10-25 12:01:05,185 ----------------------------------------------------------------------------------------------------
386
+ 2023-10-25 12:01:27,882 epoch 4 - iter 361/3617 - loss 0.31486142 - time (sec): 22.70 - samples/sec: 1706.40 - lr: 0.000038 - momentum: 0.000000
387
+ 2023-10-25 12:01:50,468 epoch 4 - iter 722/3617 - loss 0.30266314 - time (sec): 45.28 - samples/sec: 1686.83 - lr: 0.000038 - momentum: 0.000000
388
+ 2023-10-25 12:02:13,127 epoch 4 - iter 1083/3617 - loss 0.30220104 - time (sec): 67.94 - samples/sec: 1689.02 - lr: 0.000037 - momentum: 0.000000
389
+ 2023-10-25 12:02:35,756 epoch 4 - iter 1444/3617 - loss 0.29844936 - time (sec): 90.57 - samples/sec: 1670.74 - lr: 0.000037 - momentum: 0.000000
390
+ 2023-10-25 12:02:58,524 epoch 4 - iter 1805/3617 - loss 0.29550689 - time (sec): 113.34 - samples/sec: 1672.63 - lr: 0.000036 - momentum: 0.000000
391
+ 2023-10-25 12:03:21,138 epoch 4 - iter 2166/3617 - loss 0.29482135 - time (sec): 135.95 - samples/sec: 1663.58 - lr: 0.000036 - momentum: 0.000000
392
+ 2023-10-25 12:03:43,665 epoch 4 - iter 2527/3617 - loss 0.29559234 - time (sec): 158.48 - samples/sec: 1663.63 - lr: 0.000035 - momentum: 0.000000
393
+ 2023-10-25 12:04:06,283 epoch 4 - iter 2888/3617 - loss 0.29737787 - time (sec): 181.10 - samples/sec: 1660.70 - lr: 0.000034 - momentum: 0.000000
394
+ 2023-10-25 12:04:29,216 epoch 4 - iter 3249/3617 - loss 0.29938044 - time (sec): 204.03 - samples/sec: 1667.11 - lr: 0.000034 - momentum: 0.000000
395
+ 2023-10-25 12:04:52,016 epoch 4 - iter 3610/3617 - loss 0.29694305 - time (sec): 226.83 - samples/sec: 1672.49 - lr: 0.000033 - momentum: 0.000000
396
+ 2023-10-25 12:04:52,435 ----------------------------------------------------------------------------------------------------
397
+ 2023-10-25 12:04:52,436 EPOCH 4 done: loss 0.2968 - lr: 0.000033
398
+ 2023-10-25 12:04:57,151 DEV : loss 0.2834990918636322 - f1-score (micro avg) 0.0023
399
+ 2023-10-25 12:04:57,173 ----------------------------------------------------------------------------------------------------
400
+ 2023-10-25 12:05:20,646 epoch 5 - iter 361/3617 - loss 0.30958497 - time (sec): 23.47 - samples/sec: 1681.65 - lr: 0.000033 - momentum: 0.000000
401
+ 2023-10-25 12:05:43,246 epoch 5 - iter 722/3617 - loss 0.29814374 - time (sec): 46.07 - samples/sec: 1668.88 - lr: 0.000032 - momentum: 0.000000
402
+ 2023-10-25 12:06:05,856 epoch 5 - iter 1083/3617 - loss 0.29063581 - time (sec): 68.68 - samples/sec: 1663.40 - lr: 0.000032 - momentum: 0.000000
403
+ 2023-10-25 12:06:28,402 epoch 5 - iter 1444/3617 - loss 0.28726657 - time (sec): 91.23 - samples/sec: 1668.57 - lr: 0.000031 - momentum: 0.000000
404
+ 2023-10-25 12:06:50,962 epoch 5 - iter 1805/3617 - loss 0.28881196 - time (sec): 113.79 - samples/sec: 1669.95 - lr: 0.000031 - momentum: 0.000000
405
+ 2023-10-25 12:07:13,960 epoch 5 - iter 2166/3617 - loss 0.28967773 - time (sec): 136.79 - samples/sec: 1673.87 - lr: 0.000030 - momentum: 0.000000
406
+ 2023-10-25 12:07:36,621 epoch 5 - iter 2527/3617 - loss 0.29134561 - time (sec): 159.45 - samples/sec: 1668.53 - lr: 0.000029 - momentum: 0.000000
407
+ 2023-10-25 12:07:59,257 epoch 5 - iter 2888/3617 - loss 0.29414601 - time (sec): 182.08 - samples/sec: 1667.95 - lr: 0.000029 - momentum: 0.000000
408
+ 2023-10-25 12:08:21,892 epoch 5 - iter 3249/3617 - loss 0.29373568 - time (sec): 204.72 - samples/sec: 1663.60 - lr: 0.000028 - momentum: 0.000000
409
+ 2023-10-25 12:08:44,658 epoch 5 - iter 3610/3617 - loss 0.29343011 - time (sec): 227.48 - samples/sec: 1667.69 - lr: 0.000028 - momentum: 0.000000
410
+ 2023-10-25 12:08:45,069 ----------------------------------------------------------------------------------------------------
411
+ 2023-10-25 12:08:45,069 EPOCH 5 done: loss 0.2934 - lr: 0.000028
412
+ 2023-10-25 12:08:49,763 DEV : loss 0.27164599299430847 - f1-score (micro avg) 0.0
413
+ 2023-10-25 12:08:49,785 ----------------------------------------------------------------------------------------------------
414
+ 2023-10-25 12:09:12,514 epoch 6 - iter 361/3617 - loss 0.31431851 - time (sec): 22.73 - samples/sec: 1671.84 - lr: 0.000027 - momentum: 0.000000
415
+ 2023-10-25 12:09:35,378 epoch 6 - iter 722/3617 - loss 0.29910863 - time (sec): 45.59 - samples/sec: 1692.45 - lr: 0.000027 - momentum: 0.000000
416
+ 2023-10-25 12:09:58,193 epoch 6 - iter 1083/3617 - loss 0.29460583 - time (sec): 68.41 - samples/sec: 1692.25 - lr: 0.000026 - momentum: 0.000000
417
+ 2023-10-25 12:10:20,897 epoch 6 - iter 1444/3617 - loss 0.29799880 - time (sec): 91.11 - samples/sec: 1687.46 - lr: 0.000026 - momentum: 0.000000
418
+ 2023-10-25 12:10:43,359 epoch 6 - iter 1805/3617 - loss 0.29509303 - time (sec): 113.57 - samples/sec: 1680.84 - lr: 0.000025 - momentum: 0.000000
419
+ 2023-10-25 12:11:05,929 epoch 6 - iter 2166/3617 - loss 0.29227878 - time (sec): 136.14 - samples/sec: 1674.83 - lr: 0.000024 - momentum: 0.000000
420
+ 2023-10-25 12:11:28,526 epoch 6 - iter 2527/3617 - loss 0.29220228 - time (sec): 158.74 - samples/sec: 1669.69 - lr: 0.000024 - momentum: 0.000000
421
+ 2023-10-25 12:11:51,388 epoch 6 - iter 2888/3617 - loss 0.28976457 - time (sec): 181.60 - samples/sec: 1677.10 - lr: 0.000023 - momentum: 0.000000
422
+ 2023-10-25 12:12:13,993 epoch 6 - iter 3249/3617 - loss 0.28949741 - time (sec): 204.21 - samples/sec: 1674.39 - lr: 0.000023 - momentum: 0.000000
423
+ 2023-10-25 12:12:36,781 epoch 6 - iter 3610/3617 - loss 0.29047095 - time (sec): 226.99 - samples/sec: 1670.50 - lr: 0.000022 - momentum: 0.000000
424
+ 2023-10-25 12:12:37,217 ----------------------------------------------------------------------------------------------------
425
+ 2023-10-25 12:12:37,218 EPOCH 6 done: loss 0.2905 - lr: 0.000022
426
+ 2023-10-25 12:12:42,446 DEV : loss 0.2741363048553467 - f1-score (micro avg) 0.0
427
+ 2023-10-25 12:12:42,469 ----------------------------------------------------------------------------------------------------
428
+ 2023-10-25 12:13:05,031 epoch 7 - iter 361/3617 - loss 0.28801601 - time (sec): 22.56 - samples/sec: 1668.20 - lr: 0.000022 - momentum: 0.000000
429
+ 2023-10-25 12:13:27,676 epoch 7 - iter 722/3617 - loss 0.28684817 - time (sec): 45.21 - samples/sec: 1642.00 - lr: 0.000021 - momentum: 0.000000
430
+ 2023-10-25 12:13:50,389 epoch 7 - iter 1083/3617 - loss 0.28911761 - time (sec): 67.92 - samples/sec: 1636.66 - lr: 0.000021 - momentum: 0.000000
431
+ 2023-10-25 12:14:12,991 epoch 7 - iter 1444/3617 - loss 0.28494759 - time (sec): 90.52 - samples/sec: 1647.46 - lr: 0.000020 - momentum: 0.000000
432
+ 2023-10-25 12:14:35,764 epoch 7 - iter 1805/3617 - loss 0.28299654 - time (sec): 113.29 - samples/sec: 1651.43 - lr: 0.000019 - momentum: 0.000000
433
+ 2023-10-25 12:14:58,250 epoch 7 - iter 2166/3617 - loss 0.28544928 - time (sec): 135.78 - samples/sec: 1648.64 - lr: 0.000019 - momentum: 0.000000
434
+ 2023-10-25 12:15:21,100 epoch 7 - iter 2527/3617 - loss 0.28500039 - time (sec): 158.63 - samples/sec: 1656.30 - lr: 0.000018 - momentum: 0.000000
435
+ 2023-10-25 12:15:44,065 epoch 7 - iter 2888/3617 - loss 0.28630743 - time (sec): 181.60 - samples/sec: 1662.84 - lr: 0.000018 - momentum: 0.000000
436
+ 2023-10-25 12:16:06,597 epoch 7 - iter 3249/3617 - loss 0.28966796 - time (sec): 204.13 - samples/sec: 1667.85 - lr: 0.000017 - momentum: 0.000000
437
+ 2023-10-25 12:16:29,444 epoch 7 - iter 3610/3617 - loss 0.29008210 - time (sec): 226.97 - samples/sec: 1671.33 - lr: 0.000017 - momentum: 0.000000
438
+ 2023-10-25 12:16:29,851 ----------------------------------------------------------------------------------------------------
439
+ 2023-10-25 12:16:29,852 EPOCH 7 done: loss 0.2903 - lr: 0.000017
440
+ 2023-10-25 12:16:35,059 DEV : loss 0.26774144172668457 - f1-score (micro avg) 0.0
441
+ 2023-10-25 12:16:35,081 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-25 12:16:57,825 epoch 8 - iter 361/3617 - loss 0.27660386 - time (sec): 22.74 - samples/sec: 1704.22 - lr: 0.000016 - momentum: 0.000000
443
+ 2023-10-25 12:17:20,392 epoch 8 - iter 722/3617 - loss 0.28079844 - time (sec): 45.31 - samples/sec: 1685.49 - lr: 0.000016 - momentum: 0.000000
444
+ 2023-10-25 12:17:43,247 epoch 8 - iter 1083/3617 - loss 0.29020034 - time (sec): 68.17 - samples/sec: 1680.45 - lr: 0.000015 - momentum: 0.000000
445
+ 2023-10-25 12:18:05,766 epoch 8 - iter 1444/3617 - loss 0.29429510 - time (sec): 90.68 - samples/sec: 1672.78 - lr: 0.000014 - momentum: 0.000000
446
+ 2023-10-25 12:18:28,476 epoch 8 - iter 1805/3617 - loss 0.29349848 - time (sec): 113.39 - samples/sec: 1670.15 - lr: 0.000014 - momentum: 0.000000
447
+ 2023-10-25 12:18:51,283 epoch 8 - iter 2166/3617 - loss 0.29446113 - time (sec): 136.20 - samples/sec: 1679.67 - lr: 0.000013 - momentum: 0.000000
448
+ 2023-10-25 12:19:13,886 epoch 8 - iter 2527/3617 - loss 0.29023797 - time (sec): 158.80 - samples/sec: 1679.28 - lr: 0.000013 - momentum: 0.000000
449
+ 2023-10-25 12:19:36,555 epoch 8 - iter 2888/3617 - loss 0.28871733 - time (sec): 181.47 - samples/sec: 1680.37 - lr: 0.000012 - momentum: 0.000000
450
+ 2023-10-25 12:19:59,060 epoch 8 - iter 3249/3617 - loss 0.29028619 - time (sec): 203.98 - samples/sec: 1678.18 - lr: 0.000012 - momentum: 0.000000
451
+ 2023-10-25 12:20:21,609 epoch 8 - iter 3610/3617 - loss 0.28929915 - time (sec): 226.53 - samples/sec: 1673.87 - lr: 0.000011 - momentum: 0.000000
452
+ 2023-10-25 12:20:22,052 ----------------------------------------------------------------------------------------------------
453
+ 2023-10-25 12:20:22,052 EPOCH 8 done: loss 0.2893 - lr: 0.000011
454
+ 2023-10-25 12:20:27,261 DEV : loss 0.2751471996307373 - f1-score (micro avg) 0.0
455
+ 2023-10-25 12:20:27,283 ----------------------------------------------------------------------------------------------------
456
+ 2023-10-25 12:20:49,886 epoch 9 - iter 361/3617 - loss 0.30361453 - time (sec): 22.60 - samples/sec: 1645.83 - lr: 0.000011 - momentum: 0.000000
457
+ 2023-10-25 12:21:12,574 epoch 9 - iter 722/3617 - loss 0.29195695 - time (sec): 45.29 - samples/sec: 1654.32 - lr: 0.000010 - momentum: 0.000000
458
+ 2023-10-25 12:21:35,215 epoch 9 - iter 1083/3617 - loss 0.29457114 - time (sec): 67.93 - samples/sec: 1652.12 - lr: 0.000009 - momentum: 0.000000
459
+ 2023-10-25 12:21:58,034 epoch 9 - iter 1444/3617 - loss 0.29407289 - time (sec): 90.75 - samples/sec: 1668.14 - lr: 0.000009 - momentum: 0.000000
460
+ 2023-10-25 12:22:20,669 epoch 9 - iter 1805/3617 - loss 0.29048332 - time (sec): 113.39 - samples/sec: 1671.64 - lr: 0.000008 - momentum: 0.000000
461
+ 2023-10-25 12:22:43,706 epoch 9 - iter 2166/3617 - loss 0.28277675 - time (sec): 136.42 - samples/sec: 1676.87 - lr: 0.000008 - momentum: 0.000000
462
+ 2023-10-25 12:23:06,481 epoch 9 - iter 2527/3617 - loss 0.28719758 - time (sec): 159.20 - samples/sec: 1675.04 - lr: 0.000007 - momentum: 0.000000
463
+ 2023-10-25 12:23:29,126 epoch 9 - iter 2888/3617 - loss 0.28670629 - time (sec): 181.84 - samples/sec: 1677.11 - lr: 0.000007 - momentum: 0.000000
464
+ 2023-10-25 12:23:51,359 epoch 9 - iter 3249/3617 - loss 0.28859893 - time (sec): 204.08 - samples/sec: 1670.16 - lr: 0.000006 - momentum: 0.000000
465
+ 2023-10-25 12:24:14,063 epoch 9 - iter 3610/3617 - loss 0.28826189 - time (sec): 226.78 - samples/sec: 1672.48 - lr: 0.000006 - momentum: 0.000000
466
+ 2023-10-25 12:24:14,484 ----------------------------------------------------------------------------------------------------
467
+ 2023-10-25 12:24:14,484 EPOCH 9 done: loss 0.2882 - lr: 0.000006
468
+ 2023-10-25 12:24:19,699 DEV : loss 0.27169540524482727 - f1-score (micro avg) 0.0
469
+ 2023-10-25 12:24:19,721 ----------------------------------------------------------------------------------------------------
470
+ 2023-10-25 12:24:42,190 epoch 10 - iter 361/3617 - loss 0.26792150 - time (sec): 22.47 - samples/sec: 1653.50 - lr: 0.000005 - momentum: 0.000000
471
+ 2023-10-25 12:25:05,071 epoch 10 - iter 722/3617 - loss 0.27746427 - time (sec): 45.35 - samples/sec: 1662.83 - lr: 0.000004 - momentum: 0.000000
472
+ 2023-10-25 12:25:28,013 epoch 10 - iter 1083/3617 - loss 0.27477559 - time (sec): 68.29 - samples/sec: 1680.32 - lr: 0.000004 - momentum: 0.000000
473
+ 2023-10-25 12:25:50,616 epoch 10 - iter 1444/3617 - loss 0.27361481 - time (sec): 90.89 - samples/sec: 1678.02 - lr: 0.000003 - momentum: 0.000000
474
+ 2023-10-25 12:26:13,325 epoch 10 - iter 1805/3617 - loss 0.27593718 - time (sec): 113.60 - samples/sec: 1684.69 - lr: 0.000003 - momentum: 0.000000
475
+ 2023-10-25 12:26:35,800 epoch 10 - iter 2166/3617 - loss 0.28020518 - time (sec): 136.08 - samples/sec: 1674.36 - lr: 0.000002 - momentum: 0.000000
476
+ 2023-10-25 12:26:58,435 epoch 10 - iter 2527/3617 - loss 0.28002646 - time (sec): 158.71 - samples/sec: 1673.74 - lr: 0.000002 - momentum: 0.000000
477
+ 2023-10-25 12:27:21,055 epoch 10 - iter 2888/3617 - loss 0.27933392 - time (sec): 181.33 - samples/sec: 1673.50 - lr: 0.000001 - momentum: 0.000000
478
+ 2023-10-25 12:27:43,896 epoch 10 - iter 3249/3617 - loss 0.28251991 - time (sec): 204.17 - samples/sec: 1677.60 - lr: 0.000001 - momentum: 0.000000
479
+ 2023-10-25 12:28:06,393 epoch 10 - iter 3610/3617 - loss 0.28721607 - time (sec): 226.67 - samples/sec: 1673.50 - lr: 0.000000 - momentum: 0.000000
480
+ 2023-10-25 12:28:06,815 ----------------------------------------------------------------------------------------------------
481
+ 2023-10-25 12:28:06,815 EPOCH 10 done: loss 0.2873 - lr: 0.000000
482
+ 2023-10-25 12:28:11,509 DEV : loss 0.27294182777404785 - f1-score (micro avg) 0.0
483
+ 2023-10-25 12:28:12,086 ----------------------------------------------------------------------------------------------------
484
+ 2023-10-25 12:28:12,087 Loading model from best epoch ...
485
+ 2023-10-25 12:28:13,838 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
486
+ 2023-10-25 12:28:20,073
487
+ Results:
488
+ - F-score (micro) 0.639
489
+ - F-score (macro) 0.4364
490
+ - Accuracy 0.4803
491
+
492
+ By class:
493
+ precision recall f1-score support
494
+
495
+ loc 0.6601 0.7360 0.6960 591
496
+ pers 0.5473 0.6975 0.6133 357
497
+ org 0.0000 0.0000 0.0000 79
498
+
499
+ micro avg 0.6140 0.6660 0.6390 1027
500
+ macro avg 0.4024 0.4778 0.4364 1027
501
+ weighted avg 0.5701 0.6660 0.6137 1027
502
+
503
+ 2023-10-25 12:28:20,073 ----------------------------------------------------------------------------------------------------