Upload ./training.log with huggingface_hub
Browse files- training.log +503 -0
training.log
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 11:49:28,311 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 11:49:28,312 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 11:49:28,312 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
317 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 11:49:28,312 Train: 14465 sentences
|
319 |
+
2023-10-25 11:49:28,312 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 11:49:28,312 Training Params:
|
322 |
+
2023-10-25 11:49:28,312 - learning_rate: "5e-05"
|
323 |
+
2023-10-25 11:49:28,312 - mini_batch_size: "4"
|
324 |
+
2023-10-25 11:49:28,312 - max_epochs: "10"
|
325 |
+
2023-10-25 11:49:28,312 - shuffle: "True"
|
326 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 11:49:28,312 Plugins:
|
328 |
+
2023-10-25 11:49:28,312 - TensorboardLogger
|
329 |
+
2023-10-25 11:49:28,312 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 11:49:28,312 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 11:49:28,312 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 11:49:28,312 Computation:
|
335 |
+
2023-10-25 11:49:28,312 - compute on device: cuda:0
|
336 |
+
2023-10-25 11:49:28,312 - embedding storage: none
|
337 |
+
2023-10-25 11:49:28,312 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 11:49:28,313 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
339 |
+
2023-10-25 11:49:28,313 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 11:49:28,313 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 11:49:28,313 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 11:49:50,809 epoch 1 - iter 361/3617 - loss 0.86993127 - time (sec): 22.50 - samples/sec: 1710.07 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-25 11:50:13,270 epoch 1 - iter 722/3617 - loss 0.52060995 - time (sec): 44.96 - samples/sec: 1692.19 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-25 11:50:35,928 epoch 1 - iter 1083/3617 - loss 0.39422738 - time (sec): 67.61 - samples/sec: 1687.75 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-25 11:50:58,635 epoch 1 - iter 1444/3617 - loss 0.32755860 - time (sec): 90.32 - samples/sec: 1677.54 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-25 11:51:20,989 epoch 1 - iter 1805/3617 - loss 0.28743077 - time (sec): 112.68 - samples/sec: 1664.91 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-25 11:51:43,571 epoch 1 - iter 2166/3617 - loss 0.25847487 - time (sec): 135.26 - samples/sec: 1665.35 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-25 11:52:06,563 epoch 1 - iter 2527/3617 - loss 0.23733988 - time (sec): 158.25 - samples/sec: 1674.91 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-25 11:52:29,326 epoch 1 - iter 2888/3617 - loss 0.22332063 - time (sec): 181.01 - samples/sec: 1678.95 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-25 11:52:51,919 epoch 1 - iter 3249/3617 - loss 0.21156741 - time (sec): 203.61 - samples/sec: 1675.79 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-25 11:53:14,580 epoch 1 - iter 3610/3617 - loss 0.20214765 - time (sec): 226.27 - samples/sec: 1676.00 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-25 11:53:15,001 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 11:53:15,001 EPOCH 1 done: loss 0.2021 - lr: 0.000050
|
354 |
+
2023-10-25 11:53:19,501 DEV : loss 0.14469869434833527 - f1-score (micro avg) 0.5759
|
355 |
+
2023-10-25 11:53:19,522 saving best model
|
356 |
+
2023-10-25 11:53:20,071 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 11:53:42,599 epoch 2 - iter 361/3617 - loss 0.10828242 - time (sec): 22.53 - samples/sec: 1681.04 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-25 11:54:05,556 epoch 2 - iter 722/3617 - loss 0.11062343 - time (sec): 45.48 - samples/sec: 1692.62 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-25 11:54:28,432 epoch 2 - iter 1083/3617 - loss 0.11343990 - time (sec): 68.36 - samples/sec: 1689.62 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-25 11:54:51,191 epoch 2 - iter 1444/3617 - loss 0.11147450 - time (sec): 91.12 - samples/sec: 1693.49 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-25 11:55:13,719 epoch 2 - iter 1805/3617 - loss 0.11268183 - time (sec): 113.65 - samples/sec: 1686.21 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-25 11:55:36,251 epoch 2 - iter 2166/3617 - loss 0.11108706 - time (sec): 136.18 - samples/sec: 1685.34 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-25 11:55:58,771 epoch 2 - iter 2527/3617 - loss 0.10962742 - time (sec): 158.70 - samples/sec: 1678.37 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-25 11:56:21,330 epoch 2 - iter 2888/3617 - loss 0.10930890 - time (sec): 181.26 - samples/sec: 1677.39 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-25 11:56:43,852 epoch 2 - iter 3249/3617 - loss 0.10745796 - time (sec): 203.78 - samples/sec: 1678.49 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-25 11:57:06,613 epoch 2 - iter 3610/3617 - loss 0.10586077 - time (sec): 226.54 - samples/sec: 1673.92 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-25 11:57:07,071 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 11:57:07,071 EPOCH 2 done: loss 0.1058 - lr: 0.000044
|
369 |
+
2023-10-25 11:57:12,310 DEV : loss 0.14430101215839386 - f1-score (micro avg) 0.6079
|
370 |
+
2023-10-25 11:57:12,332 saving best model
|
371 |
+
2023-10-25 11:57:13,111 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 11:57:35,931 epoch 3 - iter 361/3617 - loss 0.07144153 - time (sec): 22.82 - samples/sec: 1734.60 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-25 11:57:58,787 epoch 3 - iter 722/3617 - loss 0.08074855 - time (sec): 45.68 - samples/sec: 1719.95 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-25 11:58:21,681 epoch 3 - iter 1083/3617 - loss 0.08263674 - time (sec): 68.57 - samples/sec: 1716.05 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-25 11:58:44,087 epoch 3 - iter 1444/3617 - loss 0.08288668 - time (sec): 90.97 - samples/sec: 1695.55 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-25 11:59:06,702 epoch 3 - iter 1805/3617 - loss 0.10363913 - time (sec): 113.59 - samples/sec: 1690.82 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-25 11:59:29,167 epoch 3 - iter 2166/3617 - loss 0.13603267 - time (sec): 136.06 - samples/sec: 1683.24 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-25 11:59:51,558 epoch 3 - iter 2527/3617 - loss 0.15873752 - time (sec): 158.45 - samples/sec: 1675.58 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-25 12:00:14,538 epoch 3 - iter 2888/3617 - loss 0.17453687 - time (sec): 181.43 - samples/sec: 1674.80 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-25 12:00:37,065 epoch 3 - iter 3249/3617 - loss 0.18855528 - time (sec): 203.95 - samples/sec: 1676.48 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-25 12:00:59,529 epoch 3 - iter 3610/3617 - loss 0.20118879 - time (sec): 226.42 - samples/sec: 1675.07 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-25 12:00:59,959 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 12:00:59,960 EPOCH 3 done: loss 0.2013 - lr: 0.000039
|
384 |
+
2023-10-25 12:01:05,163 DEV : loss 0.2843758761882782 - f1-score (micro avg) 0.0046
|
385 |
+
2023-10-25 12:01:05,185 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-25 12:01:27,882 epoch 4 - iter 361/3617 - loss 0.31486142 - time (sec): 22.70 - samples/sec: 1706.40 - lr: 0.000038 - momentum: 0.000000
|
387 |
+
2023-10-25 12:01:50,468 epoch 4 - iter 722/3617 - loss 0.30266314 - time (sec): 45.28 - samples/sec: 1686.83 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-25 12:02:13,127 epoch 4 - iter 1083/3617 - loss 0.30220104 - time (sec): 67.94 - samples/sec: 1689.02 - lr: 0.000037 - momentum: 0.000000
|
389 |
+
2023-10-25 12:02:35,756 epoch 4 - iter 1444/3617 - loss 0.29844936 - time (sec): 90.57 - samples/sec: 1670.74 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-25 12:02:58,524 epoch 4 - iter 1805/3617 - loss 0.29550689 - time (sec): 113.34 - samples/sec: 1672.63 - lr: 0.000036 - momentum: 0.000000
|
391 |
+
2023-10-25 12:03:21,138 epoch 4 - iter 2166/3617 - loss 0.29482135 - time (sec): 135.95 - samples/sec: 1663.58 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-25 12:03:43,665 epoch 4 - iter 2527/3617 - loss 0.29559234 - time (sec): 158.48 - samples/sec: 1663.63 - lr: 0.000035 - momentum: 0.000000
|
393 |
+
2023-10-25 12:04:06,283 epoch 4 - iter 2888/3617 - loss 0.29737787 - time (sec): 181.10 - samples/sec: 1660.70 - lr: 0.000034 - momentum: 0.000000
|
394 |
+
2023-10-25 12:04:29,216 epoch 4 - iter 3249/3617 - loss 0.29938044 - time (sec): 204.03 - samples/sec: 1667.11 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-25 12:04:52,016 epoch 4 - iter 3610/3617 - loss 0.29694305 - time (sec): 226.83 - samples/sec: 1672.49 - lr: 0.000033 - momentum: 0.000000
|
396 |
+
2023-10-25 12:04:52,435 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-25 12:04:52,436 EPOCH 4 done: loss 0.2968 - lr: 0.000033
|
398 |
+
2023-10-25 12:04:57,151 DEV : loss 0.2834990918636322 - f1-score (micro avg) 0.0023
|
399 |
+
2023-10-25 12:04:57,173 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-25 12:05:20,646 epoch 5 - iter 361/3617 - loss 0.30958497 - time (sec): 23.47 - samples/sec: 1681.65 - lr: 0.000033 - momentum: 0.000000
|
401 |
+
2023-10-25 12:05:43,246 epoch 5 - iter 722/3617 - loss 0.29814374 - time (sec): 46.07 - samples/sec: 1668.88 - lr: 0.000032 - momentum: 0.000000
|
402 |
+
2023-10-25 12:06:05,856 epoch 5 - iter 1083/3617 - loss 0.29063581 - time (sec): 68.68 - samples/sec: 1663.40 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-25 12:06:28,402 epoch 5 - iter 1444/3617 - loss 0.28726657 - time (sec): 91.23 - samples/sec: 1668.57 - lr: 0.000031 - momentum: 0.000000
|
404 |
+
2023-10-25 12:06:50,962 epoch 5 - iter 1805/3617 - loss 0.28881196 - time (sec): 113.79 - samples/sec: 1669.95 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-25 12:07:13,960 epoch 5 - iter 2166/3617 - loss 0.28967773 - time (sec): 136.79 - samples/sec: 1673.87 - lr: 0.000030 - momentum: 0.000000
|
406 |
+
2023-10-25 12:07:36,621 epoch 5 - iter 2527/3617 - loss 0.29134561 - time (sec): 159.45 - samples/sec: 1668.53 - lr: 0.000029 - momentum: 0.000000
|
407 |
+
2023-10-25 12:07:59,257 epoch 5 - iter 2888/3617 - loss 0.29414601 - time (sec): 182.08 - samples/sec: 1667.95 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-25 12:08:21,892 epoch 5 - iter 3249/3617 - loss 0.29373568 - time (sec): 204.72 - samples/sec: 1663.60 - lr: 0.000028 - momentum: 0.000000
|
409 |
+
2023-10-25 12:08:44,658 epoch 5 - iter 3610/3617 - loss 0.29343011 - time (sec): 227.48 - samples/sec: 1667.69 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-25 12:08:45,069 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-25 12:08:45,069 EPOCH 5 done: loss 0.2934 - lr: 0.000028
|
412 |
+
2023-10-25 12:08:49,763 DEV : loss 0.27164599299430847 - f1-score (micro avg) 0.0
|
413 |
+
2023-10-25 12:08:49,785 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-25 12:09:12,514 epoch 6 - iter 361/3617 - loss 0.31431851 - time (sec): 22.73 - samples/sec: 1671.84 - lr: 0.000027 - momentum: 0.000000
|
415 |
+
2023-10-25 12:09:35,378 epoch 6 - iter 722/3617 - loss 0.29910863 - time (sec): 45.59 - samples/sec: 1692.45 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-25 12:09:58,193 epoch 6 - iter 1083/3617 - loss 0.29460583 - time (sec): 68.41 - samples/sec: 1692.25 - lr: 0.000026 - momentum: 0.000000
|
417 |
+
2023-10-25 12:10:20,897 epoch 6 - iter 1444/3617 - loss 0.29799880 - time (sec): 91.11 - samples/sec: 1687.46 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-25 12:10:43,359 epoch 6 - iter 1805/3617 - loss 0.29509303 - time (sec): 113.57 - samples/sec: 1680.84 - lr: 0.000025 - momentum: 0.000000
|
419 |
+
2023-10-25 12:11:05,929 epoch 6 - iter 2166/3617 - loss 0.29227878 - time (sec): 136.14 - samples/sec: 1674.83 - lr: 0.000024 - momentum: 0.000000
|
420 |
+
2023-10-25 12:11:28,526 epoch 6 - iter 2527/3617 - loss 0.29220228 - time (sec): 158.74 - samples/sec: 1669.69 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-25 12:11:51,388 epoch 6 - iter 2888/3617 - loss 0.28976457 - time (sec): 181.60 - samples/sec: 1677.10 - lr: 0.000023 - momentum: 0.000000
|
422 |
+
2023-10-25 12:12:13,993 epoch 6 - iter 3249/3617 - loss 0.28949741 - time (sec): 204.21 - samples/sec: 1674.39 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-25 12:12:36,781 epoch 6 - iter 3610/3617 - loss 0.29047095 - time (sec): 226.99 - samples/sec: 1670.50 - lr: 0.000022 - momentum: 0.000000
|
424 |
+
2023-10-25 12:12:37,217 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-25 12:12:37,218 EPOCH 6 done: loss 0.2905 - lr: 0.000022
|
426 |
+
2023-10-25 12:12:42,446 DEV : loss 0.2741363048553467 - f1-score (micro avg) 0.0
|
427 |
+
2023-10-25 12:12:42,469 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-25 12:13:05,031 epoch 7 - iter 361/3617 - loss 0.28801601 - time (sec): 22.56 - samples/sec: 1668.20 - lr: 0.000022 - momentum: 0.000000
|
429 |
+
2023-10-25 12:13:27,676 epoch 7 - iter 722/3617 - loss 0.28684817 - time (sec): 45.21 - samples/sec: 1642.00 - lr: 0.000021 - momentum: 0.000000
|
430 |
+
2023-10-25 12:13:50,389 epoch 7 - iter 1083/3617 - loss 0.28911761 - time (sec): 67.92 - samples/sec: 1636.66 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-25 12:14:12,991 epoch 7 - iter 1444/3617 - loss 0.28494759 - time (sec): 90.52 - samples/sec: 1647.46 - lr: 0.000020 - momentum: 0.000000
|
432 |
+
2023-10-25 12:14:35,764 epoch 7 - iter 1805/3617 - loss 0.28299654 - time (sec): 113.29 - samples/sec: 1651.43 - lr: 0.000019 - momentum: 0.000000
|
433 |
+
2023-10-25 12:14:58,250 epoch 7 - iter 2166/3617 - loss 0.28544928 - time (sec): 135.78 - samples/sec: 1648.64 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-25 12:15:21,100 epoch 7 - iter 2527/3617 - loss 0.28500039 - time (sec): 158.63 - samples/sec: 1656.30 - lr: 0.000018 - momentum: 0.000000
|
435 |
+
2023-10-25 12:15:44,065 epoch 7 - iter 2888/3617 - loss 0.28630743 - time (sec): 181.60 - samples/sec: 1662.84 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-25 12:16:06,597 epoch 7 - iter 3249/3617 - loss 0.28966796 - time (sec): 204.13 - samples/sec: 1667.85 - lr: 0.000017 - momentum: 0.000000
|
437 |
+
2023-10-25 12:16:29,444 epoch 7 - iter 3610/3617 - loss 0.29008210 - time (sec): 226.97 - samples/sec: 1671.33 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-25 12:16:29,851 ----------------------------------------------------------------------------------------------------
|
439 |
+
2023-10-25 12:16:29,852 EPOCH 7 done: loss 0.2903 - lr: 0.000017
|
440 |
+
2023-10-25 12:16:35,059 DEV : loss 0.26774144172668457 - f1-score (micro avg) 0.0
|
441 |
+
2023-10-25 12:16:35,081 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-25 12:16:57,825 epoch 8 - iter 361/3617 - loss 0.27660386 - time (sec): 22.74 - samples/sec: 1704.22 - lr: 0.000016 - momentum: 0.000000
|
443 |
+
2023-10-25 12:17:20,392 epoch 8 - iter 722/3617 - loss 0.28079844 - time (sec): 45.31 - samples/sec: 1685.49 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-25 12:17:43,247 epoch 8 - iter 1083/3617 - loss 0.29020034 - time (sec): 68.17 - samples/sec: 1680.45 - lr: 0.000015 - momentum: 0.000000
|
445 |
+
2023-10-25 12:18:05,766 epoch 8 - iter 1444/3617 - loss 0.29429510 - time (sec): 90.68 - samples/sec: 1672.78 - lr: 0.000014 - momentum: 0.000000
|
446 |
+
2023-10-25 12:18:28,476 epoch 8 - iter 1805/3617 - loss 0.29349848 - time (sec): 113.39 - samples/sec: 1670.15 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-25 12:18:51,283 epoch 8 - iter 2166/3617 - loss 0.29446113 - time (sec): 136.20 - samples/sec: 1679.67 - lr: 0.000013 - momentum: 0.000000
|
448 |
+
2023-10-25 12:19:13,886 epoch 8 - iter 2527/3617 - loss 0.29023797 - time (sec): 158.80 - samples/sec: 1679.28 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-25 12:19:36,555 epoch 8 - iter 2888/3617 - loss 0.28871733 - time (sec): 181.47 - samples/sec: 1680.37 - lr: 0.000012 - momentum: 0.000000
|
450 |
+
2023-10-25 12:19:59,060 epoch 8 - iter 3249/3617 - loss 0.29028619 - time (sec): 203.98 - samples/sec: 1678.18 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-25 12:20:21,609 epoch 8 - iter 3610/3617 - loss 0.28929915 - time (sec): 226.53 - samples/sec: 1673.87 - lr: 0.000011 - momentum: 0.000000
|
452 |
+
2023-10-25 12:20:22,052 ----------------------------------------------------------------------------------------------------
|
453 |
+
2023-10-25 12:20:22,052 EPOCH 8 done: loss 0.2893 - lr: 0.000011
|
454 |
+
2023-10-25 12:20:27,261 DEV : loss 0.2751471996307373 - f1-score (micro avg) 0.0
|
455 |
+
2023-10-25 12:20:27,283 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-25 12:20:49,886 epoch 9 - iter 361/3617 - loss 0.30361453 - time (sec): 22.60 - samples/sec: 1645.83 - lr: 0.000011 - momentum: 0.000000
|
457 |
+
2023-10-25 12:21:12,574 epoch 9 - iter 722/3617 - loss 0.29195695 - time (sec): 45.29 - samples/sec: 1654.32 - lr: 0.000010 - momentum: 0.000000
|
458 |
+
2023-10-25 12:21:35,215 epoch 9 - iter 1083/3617 - loss 0.29457114 - time (sec): 67.93 - samples/sec: 1652.12 - lr: 0.000009 - momentum: 0.000000
|
459 |
+
2023-10-25 12:21:58,034 epoch 9 - iter 1444/3617 - loss 0.29407289 - time (sec): 90.75 - samples/sec: 1668.14 - lr: 0.000009 - momentum: 0.000000
|
460 |
+
2023-10-25 12:22:20,669 epoch 9 - iter 1805/3617 - loss 0.29048332 - time (sec): 113.39 - samples/sec: 1671.64 - lr: 0.000008 - momentum: 0.000000
|
461 |
+
2023-10-25 12:22:43,706 epoch 9 - iter 2166/3617 - loss 0.28277675 - time (sec): 136.42 - samples/sec: 1676.87 - lr: 0.000008 - momentum: 0.000000
|
462 |
+
2023-10-25 12:23:06,481 epoch 9 - iter 2527/3617 - loss 0.28719758 - time (sec): 159.20 - samples/sec: 1675.04 - lr: 0.000007 - momentum: 0.000000
|
463 |
+
2023-10-25 12:23:29,126 epoch 9 - iter 2888/3617 - loss 0.28670629 - time (sec): 181.84 - samples/sec: 1677.11 - lr: 0.000007 - momentum: 0.000000
|
464 |
+
2023-10-25 12:23:51,359 epoch 9 - iter 3249/3617 - loss 0.28859893 - time (sec): 204.08 - samples/sec: 1670.16 - lr: 0.000006 - momentum: 0.000000
|
465 |
+
2023-10-25 12:24:14,063 epoch 9 - iter 3610/3617 - loss 0.28826189 - time (sec): 226.78 - samples/sec: 1672.48 - lr: 0.000006 - momentum: 0.000000
|
466 |
+
2023-10-25 12:24:14,484 ----------------------------------------------------------------------------------------------------
|
467 |
+
2023-10-25 12:24:14,484 EPOCH 9 done: loss 0.2882 - lr: 0.000006
|
468 |
+
2023-10-25 12:24:19,699 DEV : loss 0.27169540524482727 - f1-score (micro avg) 0.0
|
469 |
+
2023-10-25 12:24:19,721 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-25 12:24:42,190 epoch 10 - iter 361/3617 - loss 0.26792150 - time (sec): 22.47 - samples/sec: 1653.50 - lr: 0.000005 - momentum: 0.000000
|
471 |
+
2023-10-25 12:25:05,071 epoch 10 - iter 722/3617 - loss 0.27746427 - time (sec): 45.35 - samples/sec: 1662.83 - lr: 0.000004 - momentum: 0.000000
|
472 |
+
2023-10-25 12:25:28,013 epoch 10 - iter 1083/3617 - loss 0.27477559 - time (sec): 68.29 - samples/sec: 1680.32 - lr: 0.000004 - momentum: 0.000000
|
473 |
+
2023-10-25 12:25:50,616 epoch 10 - iter 1444/3617 - loss 0.27361481 - time (sec): 90.89 - samples/sec: 1678.02 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-25 12:26:13,325 epoch 10 - iter 1805/3617 - loss 0.27593718 - time (sec): 113.60 - samples/sec: 1684.69 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-25 12:26:35,800 epoch 10 - iter 2166/3617 - loss 0.28020518 - time (sec): 136.08 - samples/sec: 1674.36 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-25 12:26:58,435 epoch 10 - iter 2527/3617 - loss 0.28002646 - time (sec): 158.71 - samples/sec: 1673.74 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-25 12:27:21,055 epoch 10 - iter 2888/3617 - loss 0.27933392 - time (sec): 181.33 - samples/sec: 1673.50 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-25 12:27:43,896 epoch 10 - iter 3249/3617 - loss 0.28251991 - time (sec): 204.17 - samples/sec: 1677.60 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-25 12:28:06,393 epoch 10 - iter 3610/3617 - loss 0.28721607 - time (sec): 226.67 - samples/sec: 1673.50 - lr: 0.000000 - momentum: 0.000000
|
480 |
+
2023-10-25 12:28:06,815 ----------------------------------------------------------------------------------------------------
|
481 |
+
2023-10-25 12:28:06,815 EPOCH 10 done: loss 0.2873 - lr: 0.000000
|
482 |
+
2023-10-25 12:28:11,509 DEV : loss 0.27294182777404785 - f1-score (micro avg) 0.0
|
483 |
+
2023-10-25 12:28:12,086 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 12:28:12,087 Loading model from best epoch ...
|
485 |
+
2023-10-25 12:28:13,838 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
486 |
+
2023-10-25 12:28:20,073
|
487 |
+
Results:
|
488 |
+
- F-score (micro) 0.639
|
489 |
+
- F-score (macro) 0.4364
|
490 |
+
- Accuracy 0.4803
|
491 |
+
|
492 |
+
By class:
|
493 |
+
precision recall f1-score support
|
494 |
+
|
495 |
+
loc 0.6601 0.7360 0.6960 591
|
496 |
+
pers 0.5473 0.6975 0.6133 357
|
497 |
+
org 0.0000 0.0000 0.0000 79
|
498 |
+
|
499 |
+
micro avg 0.6140 0.6660 0.6390 1027
|
500 |
+
macro avg 0.4024 0.4778 0.4364 1027
|
501 |
+
weighted avg 0.5701 0.6660 0.6137 1027
|
502 |
+
|
503 |
+
2023-10-25 12:28:20,073 ----------------------------------------------------------------------------------------------------
|