Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26651454e7ab194684b6480edfe8a2ee7368c472d4c617c31695aa20cf43a864
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 00:56:24 0.0000 0.2506 0.1209 0.4869 0.7643 0.5948 0.4307
|
3 |
+
2 00:58:23 0.0000 0.0843 0.1270 0.5262 0.8032 0.6359 0.4746
|
4 |
+
3 01:00:23 0.0000 0.0604 0.1630 0.5248 0.7872 0.6297 0.4703
|
5 |
+
4 01:02:21 0.0000 0.0471 0.2472 0.5364 0.7849 0.6373 0.4754
|
6 |
+
5 01:04:19 0.0000 0.0334 0.2819 0.5281 0.7860 0.6317 0.4731
|
7 |
+
6 01:06:17 0.0000 0.0233 0.3204 0.5577 0.7243 0.6302 0.4665
|
8 |
+
7 01:08:15 0.0000 0.0172 0.3245 0.5541 0.7563 0.6396 0.4804
|
9 |
+
8 01:10:13 0.0000 0.0126 0.3657 0.5463 0.7620 0.6364 0.4757
|
10 |
+
9 01:12:11 0.0000 0.0077 0.3877 0.5453 0.7712 0.6389 0.4773
|
11 |
+
10 01:14:06 0.0000 0.0053 0.3943 0.5533 0.7780 0.6467 0.4854
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-15 00:54:28,384 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-15 00:54:28,385 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-15 00:54:28,385 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-15 00:54:28,386 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
53 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-15 00:54:28,386 Train: 14465 sentences
|
55 |
+
2023-10-15 00:54:28,386 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-15 00:54:28,386 Training Params:
|
58 |
+
2023-10-15 00:54:28,386 - learning_rate: "5e-05"
|
59 |
+
2023-10-15 00:54:28,386 - mini_batch_size: "8"
|
60 |
+
2023-10-15 00:54:28,386 - max_epochs: "10"
|
61 |
+
2023-10-15 00:54:28,386 - shuffle: "True"
|
62 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-15 00:54:28,386 Plugins:
|
64 |
+
2023-10-15 00:54:28,386 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-15 00:54:28,386 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-15 00:54:28,386 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-15 00:54:28,386 Computation:
|
70 |
+
2023-10-15 00:54:28,386 - compute on device: cuda:0
|
71 |
+
2023-10-15 00:54:28,386 - embedding storage: none
|
72 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-15 00:54:28,386 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
74 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-15 00:54:28,386 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-15 00:54:40,113 epoch 1 - iter 180/1809 - loss 1.36932055 - time (sec): 11.73 - samples/sec: 3221.87 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-15 00:54:50,988 epoch 1 - iter 360/1809 - loss 0.78656800 - time (sec): 22.60 - samples/sec: 3318.33 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-15 00:55:02,032 epoch 1 - iter 540/1809 - loss 0.57710329 - time (sec): 33.64 - samples/sec: 3360.36 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-15 00:55:12,671 epoch 1 - iter 720/1809 - loss 0.46762299 - time (sec): 44.28 - samples/sec: 3393.68 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-15 00:55:23,778 epoch 1 - iter 900/1809 - loss 0.39831031 - time (sec): 55.39 - samples/sec: 3406.54 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-15 00:55:34,661 epoch 1 - iter 1080/1809 - loss 0.35140217 - time (sec): 66.27 - samples/sec: 3414.05 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-15 00:55:45,480 epoch 1 - iter 1260/1809 - loss 0.31666739 - time (sec): 77.09 - samples/sec: 3414.18 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-15 00:55:56,429 epoch 1 - iter 1440/1809 - loss 0.28905303 - time (sec): 88.04 - samples/sec: 3419.36 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-15 00:56:07,587 epoch 1 - iter 1620/1809 - loss 0.26797933 - time (sec): 99.20 - samples/sec: 3426.93 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-15 00:56:19,166 epoch 1 - iter 1800/1809 - loss 0.25117700 - time (sec): 110.78 - samples/sec: 3415.31 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-15 00:56:19,662 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-15 00:56:19,662 EPOCH 1 done: loss 0.2506 - lr: 0.000050
|
88 |
+
2023-10-15 00:56:24,421 DEV : loss 0.12091385573148727 - f1-score (micro avg) 0.5948
|
89 |
+
2023-10-15 00:56:24,450 saving best model
|
90 |
+
2023-10-15 00:56:24,830 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-15 00:56:35,904 epoch 2 - iter 180/1809 - loss 0.09488290 - time (sec): 11.07 - samples/sec: 3502.43 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-15 00:56:47,030 epoch 2 - iter 360/1809 - loss 0.08892161 - time (sec): 22.20 - samples/sec: 3436.57 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-15 00:56:57,888 epoch 2 - iter 540/1809 - loss 0.08874244 - time (sec): 33.06 - samples/sec: 3441.96 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-15 00:57:08,872 epoch 2 - iter 720/1809 - loss 0.08742615 - time (sec): 44.04 - samples/sec: 3468.08 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-15 00:57:19,849 epoch 2 - iter 900/1809 - loss 0.08807139 - time (sec): 55.02 - samples/sec: 3462.99 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-15 00:57:31,096 epoch 2 - iter 1080/1809 - loss 0.08743360 - time (sec): 66.26 - samples/sec: 3469.58 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-15 00:57:42,000 epoch 2 - iter 1260/1809 - loss 0.08731323 - time (sec): 77.17 - samples/sec: 3458.92 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-15 00:57:52,947 epoch 2 - iter 1440/1809 - loss 0.08517886 - time (sec): 88.12 - samples/sec: 3442.76 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-15 00:58:05,025 epoch 2 - iter 1620/1809 - loss 0.08456187 - time (sec): 100.19 - samples/sec: 3407.26 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-15 00:58:16,180 epoch 2 - iter 1800/1809 - loss 0.08446233 - time (sec): 111.35 - samples/sec: 3397.65 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-15 00:58:16,714 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-15 00:58:16,715 EPOCH 2 done: loss 0.0843 - lr: 0.000044
|
103 |
+
2023-10-15 00:58:23,259 DEV : loss 0.12702764570713043 - f1-score (micro avg) 0.6359
|
104 |
+
2023-10-15 00:58:23,291 saving best model
|
105 |
+
2023-10-15 00:58:23,759 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-15 00:58:34,801 epoch 3 - iter 180/1809 - loss 0.05664383 - time (sec): 11.04 - samples/sec: 3424.57 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-15 00:58:46,143 epoch 3 - iter 360/1809 - loss 0.05872794 - time (sec): 22.38 - samples/sec: 3432.01 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-15 00:58:57,084 epoch 3 - iter 540/1809 - loss 0.05857268 - time (sec): 33.32 - samples/sec: 3403.64 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-15 00:59:08,293 epoch 3 - iter 720/1809 - loss 0.06057457 - time (sec): 44.53 - samples/sec: 3387.71 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-15 00:59:19,331 epoch 3 - iter 900/1809 - loss 0.06151060 - time (sec): 55.57 - samples/sec: 3367.52 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-15 00:59:30,825 epoch 3 - iter 1080/1809 - loss 0.06087473 - time (sec): 67.06 - samples/sec: 3361.04 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-15 00:59:42,483 epoch 3 - iter 1260/1809 - loss 0.06048810 - time (sec): 78.72 - samples/sec: 3344.19 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-15 00:59:53,394 epoch 3 - iter 1440/1809 - loss 0.06164535 - time (sec): 89.63 - samples/sec: 3362.29 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-15 01:00:04,335 epoch 3 - iter 1620/1809 - loss 0.06135065 - time (sec): 100.57 - samples/sec: 3367.20 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-15 01:00:16,005 epoch 3 - iter 1800/1809 - loss 0.06014152 - time (sec): 112.24 - samples/sec: 3372.10 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-15 01:00:16,523 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-15 01:00:16,523 EPOCH 3 done: loss 0.0604 - lr: 0.000039
|
118 |
+
2023-10-15 01:00:23,799 DEV : loss 0.16295944154262543 - f1-score (micro avg) 0.6297
|
119 |
+
2023-10-15 01:00:23,837 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-10-15 01:00:35,272 epoch 4 - iter 180/1809 - loss 0.03961425 - time (sec): 11.43 - samples/sec: 3311.94 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-15 01:00:46,336 epoch 4 - iter 360/1809 - loss 0.04234972 - time (sec): 22.50 - samples/sec: 3319.62 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-15 01:00:57,554 epoch 4 - iter 540/1809 - loss 0.04351680 - time (sec): 33.72 - samples/sec: 3401.86 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-15 01:01:08,577 epoch 4 - iter 720/1809 - loss 0.04425001 - time (sec): 44.74 - samples/sec: 3398.31 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-15 01:01:19,570 epoch 4 - iter 900/1809 - loss 0.04646110 - time (sec): 55.73 - samples/sec: 3402.61 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-15 01:01:30,811 epoch 4 - iter 1080/1809 - loss 0.04600080 - time (sec): 66.97 - samples/sec: 3392.58 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-15 01:01:42,161 epoch 4 - iter 1260/1809 - loss 0.04633692 - time (sec): 78.32 - samples/sec: 3386.88 - lr: 0.000035 - momentum: 0.000000
|
127 |
+
2023-10-15 01:01:53,180 epoch 4 - iter 1440/1809 - loss 0.04642934 - time (sec): 89.34 - samples/sec: 3387.53 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-15 01:02:04,071 epoch 4 - iter 1620/1809 - loss 0.04694786 - time (sec): 100.23 - samples/sec: 3394.43 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-15 01:02:15,553 epoch 4 - iter 1800/1809 - loss 0.04701010 - time (sec): 111.71 - samples/sec: 3385.85 - lr: 0.000033 - momentum: 0.000000
|
130 |
+
2023-10-15 01:02:16,080 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-10-15 01:02:16,080 EPOCH 4 done: loss 0.0471 - lr: 0.000033
|
132 |
+
2023-10-15 01:02:21,725 DEV : loss 0.24718838930130005 - f1-score (micro avg) 0.6373
|
133 |
+
2023-10-15 01:02:21,763 saving best model
|
134 |
+
2023-10-15 01:02:22,289 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-15 01:02:33,602 epoch 5 - iter 180/1809 - loss 0.04139222 - time (sec): 11.31 - samples/sec: 3281.09 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-15 01:02:44,892 epoch 5 - iter 360/1809 - loss 0.03425512 - time (sec): 22.60 - samples/sec: 3361.65 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-15 01:02:56,018 epoch 5 - iter 540/1809 - loss 0.03244197 - time (sec): 33.72 - samples/sec: 3392.18 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-15 01:03:06,923 epoch 5 - iter 720/1809 - loss 0.03138031 - time (sec): 44.63 - samples/sec: 3400.16 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-15 01:03:19,372 epoch 5 - iter 900/1809 - loss 0.03282818 - time (sec): 57.08 - samples/sec: 3327.57 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-15 01:03:30,561 epoch 5 - iter 1080/1809 - loss 0.03451375 - time (sec): 68.26 - samples/sec: 3346.02 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-15 01:03:41,400 epoch 5 - iter 1260/1809 - loss 0.03406145 - time (sec): 79.10 - samples/sec: 3384.90 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-15 01:03:52,273 epoch 5 - iter 1440/1809 - loss 0.03339172 - time (sec): 89.98 - samples/sec: 3392.53 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-15 01:04:02,972 epoch 5 - iter 1620/1809 - loss 0.03362623 - time (sec): 100.68 - samples/sec: 3398.84 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-15 01:04:13,377 epoch 5 - iter 1800/1809 - loss 0.03349583 - time (sec): 111.08 - samples/sec: 3402.69 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-15 01:04:13,958 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-15 01:04:13,958 EPOCH 5 done: loss 0.0334 - lr: 0.000028
|
147 |
+
2023-10-15 01:04:19,608 DEV : loss 0.28187352418899536 - f1-score (micro avg) 0.6317
|
148 |
+
2023-10-15 01:04:19,639 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-15 01:04:30,695 epoch 6 - iter 180/1809 - loss 0.02173032 - time (sec): 11.05 - samples/sec: 3382.71 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-15 01:04:41,645 epoch 6 - iter 360/1809 - loss 0.02768280 - time (sec): 22.00 - samples/sec: 3446.91 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-15 01:04:52,882 epoch 6 - iter 540/1809 - loss 0.02661026 - time (sec): 33.24 - samples/sec: 3421.56 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-15 01:05:04,092 epoch 6 - iter 720/1809 - loss 0.02450565 - time (sec): 44.45 - samples/sec: 3428.34 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-15 01:05:14,986 epoch 6 - iter 900/1809 - loss 0.02344113 - time (sec): 55.35 - samples/sec: 3425.30 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-15 01:05:25,899 epoch 6 - iter 1080/1809 - loss 0.02273246 - time (sec): 66.26 - samples/sec: 3429.11 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-15 01:05:36,612 epoch 6 - iter 1260/1809 - loss 0.02264429 - time (sec): 76.97 - samples/sec: 3434.75 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-15 01:05:47,521 epoch 6 - iter 1440/1809 - loss 0.02292782 - time (sec): 87.88 - samples/sec: 3437.93 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-15 01:05:58,443 epoch 6 - iter 1620/1809 - loss 0.02269623 - time (sec): 98.80 - samples/sec: 3446.68 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-15 01:06:09,409 epoch 6 - iter 1800/1809 - loss 0.02324916 - time (sec): 109.77 - samples/sec: 3444.92 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-15 01:06:09,911 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-15 01:06:09,911 EPOCH 6 done: loss 0.0233 - lr: 0.000022
|
161 |
+
2023-10-15 01:06:17,183 DEV : loss 0.320418119430542 - f1-score (micro avg) 0.6302
|
162 |
+
2023-10-15 01:06:17,221 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-15 01:06:28,192 epoch 7 - iter 180/1809 - loss 0.02087467 - time (sec): 10.97 - samples/sec: 3370.81 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-15 01:06:39,389 epoch 7 - iter 360/1809 - loss 0.01917004 - time (sec): 22.17 - samples/sec: 3315.62 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-15 01:06:50,537 epoch 7 - iter 540/1809 - loss 0.01840608 - time (sec): 33.31 - samples/sec: 3351.73 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-15 01:07:01,437 epoch 7 - iter 720/1809 - loss 0.01729318 - time (sec): 44.21 - samples/sec: 3365.69 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-15 01:07:12,404 epoch 7 - iter 900/1809 - loss 0.01787055 - time (sec): 55.18 - samples/sec: 3387.47 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-15 01:07:23,323 epoch 7 - iter 1080/1809 - loss 0.01780583 - time (sec): 66.10 - samples/sec: 3405.28 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-15 01:07:34,647 epoch 7 - iter 1260/1809 - loss 0.01795576 - time (sec): 77.42 - samples/sec: 3411.06 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-15 01:07:45,565 epoch 7 - iter 1440/1809 - loss 0.01738303 - time (sec): 88.34 - samples/sec: 3410.11 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-15 01:07:56,827 epoch 7 - iter 1620/1809 - loss 0.01737434 - time (sec): 99.60 - samples/sec: 3426.76 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-15 01:08:07,817 epoch 7 - iter 1800/1809 - loss 0.01726721 - time (sec): 110.59 - samples/sec: 3420.15 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-15 01:08:08,321 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-15 01:08:08,321 EPOCH 7 done: loss 0.0172 - lr: 0.000017
|
175 |
+
2023-10-15 01:08:14,981 DEV : loss 0.32448261976242065 - f1-score (micro avg) 0.6396
|
176 |
+
2023-10-15 01:08:15,030 saving best model
|
177 |
+
2023-10-15 01:08:15,537 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-15 01:08:26,680 epoch 8 - iter 180/1809 - loss 0.00879191 - time (sec): 11.14 - samples/sec: 3328.67 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-15 01:08:37,699 epoch 8 - iter 360/1809 - loss 0.00863859 - time (sec): 22.16 - samples/sec: 3403.22 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-15 01:08:48,540 epoch 8 - iter 540/1809 - loss 0.00936001 - time (sec): 33.00 - samples/sec: 3408.03 - lr: 0.000015 - momentum: 0.000000
|
181 |
+
2023-10-15 01:08:59,444 epoch 8 - iter 720/1809 - loss 0.01103862 - time (sec): 43.90 - samples/sec: 3454.19 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-15 01:09:10,253 epoch 8 - iter 900/1809 - loss 0.01061716 - time (sec): 54.71 - samples/sec: 3445.10 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-15 01:09:21,080 epoch 8 - iter 1080/1809 - loss 0.01176131 - time (sec): 65.54 - samples/sec: 3452.23 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-15 01:09:32,223 epoch 8 - iter 1260/1809 - loss 0.01247786 - time (sec): 76.68 - samples/sec: 3435.24 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-15 01:09:43,301 epoch 8 - iter 1440/1809 - loss 0.01260504 - time (sec): 87.76 - samples/sec: 3445.49 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-15 01:09:54,201 epoch 8 - iter 1620/1809 - loss 0.01224412 - time (sec): 98.66 - samples/sec: 3445.31 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-15 01:10:05,425 epoch 8 - iter 1800/1809 - loss 0.01259242 - time (sec): 109.88 - samples/sec: 3438.46 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2023-10-15 01:10:06,017 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-15 01:10:06,017 EPOCH 8 done: loss 0.0126 - lr: 0.000011
|
190 |
+
2023-10-15 01:10:13,253 DEV : loss 0.3656839430332184 - f1-score (micro avg) 0.6364
|
191 |
+
2023-10-15 01:10:13,303 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-15 01:10:24,414 epoch 9 - iter 180/1809 - loss 0.00881178 - time (sec): 11.11 - samples/sec: 3404.28 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-15 01:10:35,674 epoch 9 - iter 360/1809 - loss 0.00668887 - time (sec): 22.37 - samples/sec: 3402.69 - lr: 0.000010 - momentum: 0.000000
|
194 |
+
2023-10-15 01:10:47,053 epoch 9 - iter 540/1809 - loss 0.00681184 - time (sec): 33.75 - samples/sec: 3376.53 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-15 01:10:57,765 epoch 9 - iter 720/1809 - loss 0.00818791 - time (sec): 44.46 - samples/sec: 3395.24 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-15 01:11:09,154 epoch 9 - iter 900/1809 - loss 0.00797673 - time (sec): 55.85 - samples/sec: 3392.20 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-15 01:11:20,175 epoch 9 - iter 1080/1809 - loss 0.00746067 - time (sec): 66.87 - samples/sec: 3398.87 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-15 01:11:31,090 epoch 9 - iter 1260/1809 - loss 0.00715338 - time (sec): 77.79 - samples/sec: 3400.87 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-15 01:11:42,392 epoch 9 - iter 1440/1809 - loss 0.00709472 - time (sec): 89.09 - samples/sec: 3402.95 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-15 01:11:53,443 epoch 9 - iter 1620/1809 - loss 0.00765987 - time (sec): 100.14 - samples/sec: 3403.53 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-15 01:12:04,239 epoch 9 - iter 1800/1809 - loss 0.00773264 - time (sec): 110.93 - samples/sec: 3408.14 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-15 01:12:04,763 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-15 01:12:04,763 EPOCH 9 done: loss 0.0077 - lr: 0.000006
|
204 |
+
2023-10-15 01:12:11,370 DEV : loss 0.38767531514167786 - f1-score (micro avg) 0.6389
|
205 |
+
2023-10-15 01:12:11,406 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-15 01:12:22,343 epoch 10 - iter 180/1809 - loss 0.00415207 - time (sec): 10.94 - samples/sec: 3527.98 - lr: 0.000005 - momentum: 0.000000
|
207 |
+
2023-10-15 01:12:33,418 epoch 10 - iter 360/1809 - loss 0.00612190 - time (sec): 22.01 - samples/sec: 3473.52 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-15 01:12:44,320 epoch 10 - iter 540/1809 - loss 0.00583415 - time (sec): 32.91 - samples/sec: 3445.48 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-15 01:12:55,272 epoch 10 - iter 720/1809 - loss 0.00534481 - time (sec): 43.87 - samples/sec: 3471.74 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-15 01:13:06,141 epoch 10 - iter 900/1809 - loss 0.00597649 - time (sec): 54.73 - samples/sec: 3464.86 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-15 01:13:16,696 epoch 10 - iter 1080/1809 - loss 0.00547680 - time (sec): 65.29 - samples/sec: 3466.99 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-15 01:13:27,949 epoch 10 - iter 1260/1809 - loss 0.00530282 - time (sec): 76.54 - samples/sec: 3470.09 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-15 01:13:38,673 epoch 10 - iter 1440/1809 - loss 0.00538807 - time (sec): 87.27 - samples/sec: 3474.27 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-15 01:13:49,520 epoch 10 - iter 1620/1809 - loss 0.00507514 - time (sec): 98.11 - samples/sec: 3473.47 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-15 01:14:00,390 epoch 10 - iter 1800/1809 - loss 0.00530648 - time (sec): 108.98 - samples/sec: 3465.34 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-15 01:14:01,003 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-15 01:14:01,003 EPOCH 10 done: loss 0.0053 - lr: 0.000000
|
218 |
+
2023-10-15 01:14:06,689 DEV : loss 0.39427119493484497 - f1-score (micro avg) 0.6467
|
219 |
+
2023-10-15 01:14:06,725 saving best model
|
220 |
+
2023-10-15 01:14:07,568 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-15 01:14:07,569 Loading model from best epoch ...
|
222 |
+
2023-10-15 01:14:08,941 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
223 |
+
2023-10-15 01:14:16,629
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.6507
|
226 |
+
- F-score (macro) 0.5152
|
227 |
+
- Accuracy 0.4973
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
loc 0.6339 0.7648 0.6933 591
|
233 |
+
pers 0.5823 0.7535 0.6569 357
|
234 |
+
org 0.2407 0.1646 0.1955 79
|
235 |
+
|
236 |
+
micro avg 0.5972 0.7147 0.6507 1027
|
237 |
+
macro avg 0.4856 0.5610 0.5152 1027
|
238 |
+
weighted avg 0.5857 0.7147 0.6423 1027
|
239 |
+
|
240 |
+
2023-10-15 01:14:16,629 ----------------------------------------------------------------------------------------------------
|