Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697564295.bce904bcef33.2251.12 +3 -0
- test.tsv +0 -0
- training.log +238 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37ce210ac7115ff3f1e7eedc2eef79cfcde3535b7b5927a3954fcdd011318e2
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 17:39:31 0.0000 0.4146 0.1012 0.7742 0.6198 0.6885 0.5348
|
3 |
+
2 17:40:48 0.0000 0.0906 0.0899 0.8959 0.7293 0.8041 0.6756
|
4 |
+
3 17:42:05 0.0000 0.0655 0.0833 0.8900 0.8275 0.8576 0.7592
|
5 |
+
4 17:43:22 0.0000 0.0528 0.0985 0.8817 0.8388 0.8597 0.7653
|
6 |
+
5 17:44:38 0.0000 0.0381 0.1179 0.8870 0.8192 0.8518 0.7517
|
7 |
+
6 17:45:55 0.0000 0.0280 0.1215 0.8852 0.8202 0.8515 0.7526
|
8 |
+
7 17:47:10 0.0000 0.0219 0.1272 0.9002 0.8388 0.8684 0.7785
|
9 |
+
8 17:48:25 0.0000 0.0147 0.1398 0.9003 0.8306 0.8641 0.7723
|
10 |
+
9 17:49:42 0.0000 0.0100 0.1419 0.9072 0.8285 0.8661 0.7756
|
11 |
+
10 17:50:56 0.0000 0.0074 0.1447 0.9076 0.8316 0.8679 0.7770
|
runs/events.out.tfevents.1697564295.bce904bcef33.2251.12
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4682e12806a324885a052b41c23ed14c0e243379870adfdc8111700c8ac34b8
|
3 |
+
size 808480
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 17:38:15,449 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 17:38:15,450 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 17:38:15,450 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 17:38:15,450 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
49 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 17:38:15,451 Train: 5777 sentences
|
51 |
+
2023-10-17 17:38:15,451 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 17:38:15,451 Training Params:
|
54 |
+
2023-10-17 17:38:15,451 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 17:38:15,451 - mini_batch_size: "4"
|
56 |
+
2023-10-17 17:38:15,451 - max_epochs: "10"
|
57 |
+
2023-10-17 17:38:15,451 - shuffle: "True"
|
58 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 17:38:15,451 Plugins:
|
60 |
+
2023-10-17 17:38:15,451 - TensorboardLogger
|
61 |
+
2023-10-17 17:38:15,451 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 17:38:15,451 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 17:38:15,451 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 17:38:15,451 Computation:
|
67 |
+
2023-10-17 17:38:15,451 - compute on device: cuda:0
|
68 |
+
2023-10-17 17:38:15,451 - embedding storage: none
|
69 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 17:38:15,451 Model training base path: "hmbench-icdar/nl-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
|
71 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 17:38:15,451 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 17:38:15,451 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 17:38:22,526 epoch 1 - iter 144/1445 - loss 2.78078658 - time (sec): 7.07 - samples/sec: 2289.63 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 17:38:29,934 epoch 1 - iter 288/1445 - loss 1.51861606 - time (sec): 14.48 - samples/sec: 2361.02 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 17:38:37,086 epoch 1 - iter 432/1445 - loss 1.07913069 - time (sec): 21.63 - samples/sec: 2389.34 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 17:38:44,314 epoch 1 - iter 576/1445 - loss 0.85096615 - time (sec): 28.86 - samples/sec: 2396.22 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 17:38:51,463 epoch 1 - iter 720/1445 - loss 0.70608937 - time (sec): 36.01 - samples/sec: 2419.98 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 17:38:58,764 epoch 1 - iter 864/1445 - loss 0.60898489 - time (sec): 43.31 - samples/sec: 2437.90 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 17:39:06,108 epoch 1 - iter 1008/1445 - loss 0.53851173 - time (sec): 50.66 - samples/sec: 2434.66 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 17:39:13,470 epoch 1 - iter 1152/1445 - loss 0.48695757 - time (sec): 58.02 - samples/sec: 2434.01 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 17:39:20,969 epoch 1 - iter 1296/1445 - loss 0.44708419 - time (sec): 65.52 - samples/sec: 2427.59 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 17:39:27,888 epoch 1 - iter 1440/1445 - loss 0.41563598 - time (sec): 72.44 - samples/sec: 2424.95 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 17:39:28,119 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 17:39:28,120 EPOCH 1 done: loss 0.4146 - lr: 0.000030
|
86 |
+
2023-10-17 17:39:31,097 DEV : loss 0.10123064368963242 - f1-score (micro avg) 0.6885
|
87 |
+
2023-10-17 17:39:31,119 saving best model
|
88 |
+
2023-10-17 17:39:31,520 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 17:39:38,950 epoch 2 - iter 144/1445 - loss 0.09208746 - time (sec): 7.43 - samples/sec: 2505.79 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 17:39:46,043 epoch 2 - iter 288/1445 - loss 0.09395078 - time (sec): 14.52 - samples/sec: 2443.88 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 17:39:53,806 epoch 2 - iter 432/1445 - loss 0.09675004 - time (sec): 22.28 - samples/sec: 2402.53 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 17:40:01,000 epoch 2 - iter 576/1445 - loss 0.09339561 - time (sec): 29.48 - samples/sec: 2413.55 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 17:40:08,104 epoch 2 - iter 720/1445 - loss 0.09667081 - time (sec): 36.58 - samples/sec: 2401.10 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 17:40:15,323 epoch 2 - iter 864/1445 - loss 0.09827203 - time (sec): 43.80 - samples/sec: 2384.73 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 17:40:23,213 epoch 2 - iter 1008/1445 - loss 0.09597707 - time (sec): 51.69 - samples/sec: 2384.96 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 17:40:30,320 epoch 2 - iter 1152/1445 - loss 0.09430318 - time (sec): 58.80 - samples/sec: 2373.58 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 17:40:37,393 epoch 2 - iter 1296/1445 - loss 0.09280542 - time (sec): 65.87 - samples/sec: 2384.11 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 17:40:44,895 epoch 2 - iter 1440/1445 - loss 0.09043549 - time (sec): 73.37 - samples/sec: 2395.99 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 17:40:45,128 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 17:40:45,129 EPOCH 2 done: loss 0.0906 - lr: 0.000027
|
101 |
+
2023-10-17 17:40:48,972 DEV : loss 0.08994048088788986 - f1-score (micro avg) 0.8041
|
102 |
+
2023-10-17 17:40:48,997 saving best model
|
103 |
+
2023-10-17 17:40:49,509 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 17:40:56,927 epoch 3 - iter 144/1445 - loss 0.05872201 - time (sec): 7.41 - samples/sec: 2360.16 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 17:41:03,913 epoch 3 - iter 288/1445 - loss 0.05857562 - time (sec): 14.40 - samples/sec: 2420.88 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 17:41:11,051 epoch 3 - iter 432/1445 - loss 0.06614001 - time (sec): 21.53 - samples/sec: 2394.73 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 17:41:18,016 epoch 3 - iter 576/1445 - loss 0.06718519 - time (sec): 28.50 - samples/sec: 2399.07 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 17:41:25,276 epoch 3 - iter 720/1445 - loss 0.06571201 - time (sec): 35.76 - samples/sec: 2412.78 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 17:41:32,934 epoch 3 - iter 864/1445 - loss 0.06765137 - time (sec): 43.42 - samples/sec: 2442.62 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 17:41:40,390 epoch 3 - iter 1008/1445 - loss 0.06716439 - time (sec): 50.87 - samples/sec: 2446.41 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 17:41:47,590 epoch 3 - iter 1152/1445 - loss 0.06595038 - time (sec): 58.07 - samples/sec: 2439.72 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 17:41:54,737 epoch 3 - iter 1296/1445 - loss 0.06557252 - time (sec): 65.22 - samples/sec: 2434.72 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 17:42:01,793 epoch 3 - iter 1440/1445 - loss 0.06558181 - time (sec): 72.28 - samples/sec: 2428.06 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 17:42:02,065 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 17:42:02,065 EPOCH 3 done: loss 0.0655 - lr: 0.000023
|
116 |
+
2023-10-17 17:42:05,446 DEV : loss 0.08329488337039948 - f1-score (micro avg) 0.8576
|
117 |
+
2023-10-17 17:42:05,463 saving best model
|
118 |
+
2023-10-17 17:42:05,984 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 17:42:13,079 epoch 4 - iter 144/1445 - loss 0.03908482 - time (sec): 7.09 - samples/sec: 2434.08 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 17:42:20,247 epoch 4 - iter 288/1445 - loss 0.04314761 - time (sec): 14.26 - samples/sec: 2426.27 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 17:42:27,325 epoch 4 - iter 432/1445 - loss 0.04479377 - time (sec): 21.34 - samples/sec: 2452.70 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 17:42:34,473 epoch 4 - iter 576/1445 - loss 0.04639701 - time (sec): 28.49 - samples/sec: 2443.28 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 17:42:41,304 epoch 4 - iter 720/1445 - loss 0.04663083 - time (sec): 35.32 - samples/sec: 2432.99 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 17:42:48,590 epoch 4 - iter 864/1445 - loss 0.04877294 - time (sec): 42.60 - samples/sec: 2446.39 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 17:42:56,157 epoch 4 - iter 1008/1445 - loss 0.05120701 - time (sec): 50.17 - samples/sec: 2442.48 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 17:43:03,410 epoch 4 - iter 1152/1445 - loss 0.05143852 - time (sec): 57.42 - samples/sec: 2428.03 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 17:43:11,041 epoch 4 - iter 1296/1445 - loss 0.05077155 - time (sec): 65.05 - samples/sec: 2416.48 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 17:43:18,170 epoch 4 - iter 1440/1445 - loss 0.05272378 - time (sec): 72.18 - samples/sec: 2432.26 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 17:43:18,411 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 17:43:18,411 EPOCH 4 done: loss 0.0528 - lr: 0.000020
|
131 |
+
2023-10-17 17:43:22,251 DEV : loss 0.09850851446390152 - f1-score (micro avg) 0.8597
|
132 |
+
2023-10-17 17:43:22,267 saving best model
|
133 |
+
2023-10-17 17:43:22,711 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 17:43:29,952 epoch 5 - iter 144/1445 - loss 0.02913580 - time (sec): 7.24 - samples/sec: 2455.71 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 17:43:37,014 epoch 5 - iter 288/1445 - loss 0.03254544 - time (sec): 14.30 - samples/sec: 2472.75 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 17:43:44,071 epoch 5 - iter 432/1445 - loss 0.03570376 - time (sec): 21.36 - samples/sec: 2430.96 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 17:43:51,427 epoch 5 - iter 576/1445 - loss 0.03709659 - time (sec): 28.71 - samples/sec: 2451.97 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 17:43:58,280 epoch 5 - iter 720/1445 - loss 0.03495719 - time (sec): 35.57 - samples/sec: 2450.94 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 17:44:05,351 epoch 5 - iter 864/1445 - loss 0.03454321 - time (sec): 42.64 - samples/sec: 2449.50 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 17:44:12,501 epoch 5 - iter 1008/1445 - loss 0.03603597 - time (sec): 49.79 - samples/sec: 2433.62 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 17:44:19,757 epoch 5 - iter 1152/1445 - loss 0.03646270 - time (sec): 57.04 - samples/sec: 2435.72 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 17:44:27,159 epoch 5 - iter 1296/1445 - loss 0.03650110 - time (sec): 64.45 - samples/sec: 2431.31 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 17:44:34,782 epoch 5 - iter 1440/1445 - loss 0.03803697 - time (sec): 72.07 - samples/sec: 2437.25 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 17:44:35,026 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 17:44:35,027 EPOCH 5 done: loss 0.0381 - lr: 0.000017
|
146 |
+
2023-10-17 17:44:38,550 DEV : loss 0.1178504228591919 - f1-score (micro avg) 0.8518
|
147 |
+
2023-10-17 17:44:38,569 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 17:44:46,150 epoch 6 - iter 144/1445 - loss 0.02532486 - time (sec): 7.58 - samples/sec: 2270.25 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 17:44:53,390 epoch 6 - iter 288/1445 - loss 0.02904802 - time (sec): 14.82 - samples/sec: 2313.74 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 17:45:00,617 epoch 6 - iter 432/1445 - loss 0.02918864 - time (sec): 22.05 - samples/sec: 2378.19 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 17:45:07,572 epoch 6 - iter 576/1445 - loss 0.02552071 - time (sec): 29.00 - samples/sec: 2348.34 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 17:45:15,347 epoch 6 - iter 720/1445 - loss 0.02625914 - time (sec): 36.78 - samples/sec: 2380.60 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 17:45:22,880 epoch 6 - iter 864/1445 - loss 0.02735437 - time (sec): 44.31 - samples/sec: 2377.18 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 17:45:30,013 epoch 6 - iter 1008/1445 - loss 0.02621190 - time (sec): 51.44 - samples/sec: 2380.53 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 17:45:37,375 epoch 6 - iter 1152/1445 - loss 0.02598037 - time (sec): 58.80 - samples/sec: 2407.78 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 17:45:44,521 epoch 6 - iter 1296/1445 - loss 0.02707724 - time (sec): 65.95 - samples/sec: 2399.92 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 17:45:51,591 epoch 6 - iter 1440/1445 - loss 0.02796616 - time (sec): 73.02 - samples/sec: 2407.42 - lr: 0.000013 - momentum: 0.000000
|
158 |
+
2023-10-17 17:45:51,807 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 17:45:51,807 EPOCH 6 done: loss 0.0280 - lr: 0.000013
|
160 |
+
2023-10-17 17:45:55,246 DEV : loss 0.12150729447603226 - f1-score (micro avg) 0.8515
|
161 |
+
2023-10-17 17:45:55,264 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-17 17:46:02,158 epoch 7 - iter 144/1445 - loss 0.01685010 - time (sec): 6.89 - samples/sec: 2430.06 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-17 17:46:09,209 epoch 7 - iter 288/1445 - loss 0.01264635 - time (sec): 13.94 - samples/sec: 2462.29 - lr: 0.000013 - momentum: 0.000000
|
164 |
+
2023-10-17 17:46:16,421 epoch 7 - iter 432/1445 - loss 0.01653909 - time (sec): 21.16 - samples/sec: 2502.88 - lr: 0.000012 - momentum: 0.000000
|
165 |
+
2023-10-17 17:46:23,521 epoch 7 - iter 576/1445 - loss 0.01929903 - time (sec): 28.26 - samples/sec: 2487.16 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-10-17 17:46:30,784 epoch 7 - iter 720/1445 - loss 0.01985335 - time (sec): 35.52 - samples/sec: 2493.20 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 17:46:38,378 epoch 7 - iter 864/1445 - loss 0.02389990 - time (sec): 43.11 - samples/sec: 2459.10 - lr: 0.000011 - momentum: 0.000000
|
168 |
+
2023-10-17 17:46:45,985 epoch 7 - iter 1008/1445 - loss 0.02333411 - time (sec): 50.72 - samples/sec: 2462.85 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-10-17 17:46:53,205 epoch 7 - iter 1152/1445 - loss 0.02230595 - time (sec): 57.94 - samples/sec: 2440.83 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 17:47:00,241 epoch 7 - iter 1296/1445 - loss 0.02208829 - time (sec): 64.98 - samples/sec: 2444.66 - lr: 0.000010 - momentum: 0.000000
|
171 |
+
2023-10-17 17:47:07,359 epoch 7 - iter 1440/1445 - loss 0.02176833 - time (sec): 72.09 - samples/sec: 2437.16 - lr: 0.000010 - momentum: 0.000000
|
172 |
+
2023-10-17 17:47:07,585 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-17 17:47:07,586 EPOCH 7 done: loss 0.0219 - lr: 0.000010
|
174 |
+
2023-10-17 17:47:10,966 DEV : loss 0.12723445892333984 - f1-score (micro avg) 0.8684
|
175 |
+
2023-10-17 17:47:10,985 saving best model
|
176 |
+
2023-10-17 17:47:11,514 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 17:47:18,708 epoch 8 - iter 144/1445 - loss 0.01150973 - time (sec): 7.19 - samples/sec: 2544.39 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-17 17:47:25,677 epoch 8 - iter 288/1445 - loss 0.01301164 - time (sec): 14.15 - samples/sec: 2555.66 - lr: 0.000009 - momentum: 0.000000
|
179 |
+
2023-10-17 17:47:32,800 epoch 8 - iter 432/1445 - loss 0.01277090 - time (sec): 21.28 - samples/sec: 2514.23 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-17 17:47:39,780 epoch 8 - iter 576/1445 - loss 0.01323955 - time (sec): 28.26 - samples/sec: 2479.48 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 17:47:46,861 epoch 8 - iter 720/1445 - loss 0.01367934 - time (sec): 35.34 - samples/sec: 2505.38 - lr: 0.000008 - momentum: 0.000000
|
182 |
+
2023-10-17 17:47:53,573 epoch 8 - iter 864/1445 - loss 0.01302397 - time (sec): 42.05 - samples/sec: 2521.56 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-17 17:48:00,449 epoch 8 - iter 1008/1445 - loss 0.01325247 - time (sec): 48.93 - samples/sec: 2499.40 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 17:48:07,708 epoch 8 - iter 1152/1445 - loss 0.01320999 - time (sec): 56.19 - samples/sec: 2489.07 - lr: 0.000007 - momentum: 0.000000
|
185 |
+
2023-10-17 17:48:15,148 epoch 8 - iter 1296/1445 - loss 0.01416894 - time (sec): 63.63 - samples/sec: 2487.61 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-17 17:48:22,372 epoch 8 - iter 1440/1445 - loss 0.01469288 - time (sec): 70.85 - samples/sec: 2481.73 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 17:48:22,622 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 17:48:22,623 EPOCH 8 done: loss 0.0147 - lr: 0.000007
|
189 |
+
2023-10-17 17:48:25,928 DEV : loss 0.13977086544036865 - f1-score (micro avg) 0.8641
|
190 |
+
2023-10-17 17:48:25,946 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 17:48:33,142 epoch 9 - iter 144/1445 - loss 0.00822659 - time (sec): 7.19 - samples/sec: 2436.78 - lr: 0.000006 - momentum: 0.000000
|
192 |
+
2023-10-17 17:48:40,157 epoch 9 - iter 288/1445 - loss 0.00559292 - time (sec): 14.21 - samples/sec: 2471.90 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-17 17:48:47,291 epoch 9 - iter 432/1445 - loss 0.00857791 - time (sec): 21.34 - samples/sec: 2500.95 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 17:48:54,475 epoch 9 - iter 576/1445 - loss 0.01013173 - time (sec): 28.53 - samples/sec: 2500.07 - lr: 0.000005 - momentum: 0.000000
|
195 |
+
2023-10-17 17:49:01,473 epoch 9 - iter 720/1445 - loss 0.00984675 - time (sec): 35.53 - samples/sec: 2469.71 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-17 17:49:08,496 epoch 9 - iter 864/1445 - loss 0.00969007 - time (sec): 42.55 - samples/sec: 2481.24 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 17:49:15,662 epoch 9 - iter 1008/1445 - loss 0.00977286 - time (sec): 49.71 - samples/sec: 2478.89 - lr: 0.000004 - momentum: 0.000000
|
198 |
+
2023-10-17 17:49:24,103 epoch 9 - iter 1152/1445 - loss 0.01047676 - time (sec): 58.16 - samples/sec: 2431.23 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-17 17:49:31,147 epoch 9 - iter 1296/1445 - loss 0.00999327 - time (sec): 65.20 - samples/sec: 2423.11 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 17:49:38,579 epoch 9 - iter 1440/1445 - loss 0.00998262 - time (sec): 72.63 - samples/sec: 2418.14 - lr: 0.000003 - momentum: 0.000000
|
201 |
+
2023-10-17 17:49:38,821 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 17:49:38,821 EPOCH 9 done: loss 0.0100 - lr: 0.000003
|
203 |
+
2023-10-17 17:49:42,238 DEV : loss 0.14191032946109772 - f1-score (micro avg) 0.8661
|
204 |
+
2023-10-17 17:49:42,256 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-17 17:49:49,582 epoch 10 - iter 144/1445 - loss 0.00635513 - time (sec): 7.33 - samples/sec: 2531.30 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-10-17 17:49:56,970 epoch 10 - iter 288/1445 - loss 0.00533428 - time (sec): 14.71 - samples/sec: 2412.38 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-10-17 17:50:04,167 epoch 10 - iter 432/1445 - loss 0.00667599 - time (sec): 21.91 - samples/sec: 2408.36 - lr: 0.000002 - momentum: 0.000000
|
208 |
+
2023-10-17 17:50:11,207 epoch 10 - iter 576/1445 - loss 0.00622294 - time (sec): 28.95 - samples/sec: 2412.67 - lr: 0.000002 - momentum: 0.000000
|
209 |
+
2023-10-17 17:50:18,623 epoch 10 - iter 720/1445 - loss 0.00658126 - time (sec): 36.37 - samples/sec: 2430.04 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 17:50:25,770 epoch 10 - iter 864/1445 - loss 0.00769149 - time (sec): 43.51 - samples/sec: 2457.20 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-10-17 17:50:32,601 epoch 10 - iter 1008/1445 - loss 0.00793393 - time (sec): 50.34 - samples/sec: 2466.53 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-17 17:50:39,315 epoch 10 - iter 1152/1445 - loss 0.00724425 - time (sec): 57.06 - samples/sec: 2475.80 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 17:50:46,386 epoch 10 - iter 1296/1445 - loss 0.00766193 - time (sec): 64.13 - samples/sec: 2487.64 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-10-17 17:50:53,224 epoch 10 - iter 1440/1445 - loss 0.00738923 - time (sec): 70.97 - samples/sec: 2472.81 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-17 17:50:53,477 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-17 17:50:53,477 EPOCH 10 done: loss 0.0074 - lr: 0.000000
|
217 |
+
2023-10-17 17:50:56,778 DEV : loss 0.14468367397785187 - f1-score (micro avg) 0.8679
|
218 |
+
2023-10-17 17:50:57,176 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-17 17:50:57,177 Loading model from best epoch ...
|
220 |
+
2023-10-17 17:50:58,557 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
221 |
+
2023-10-17 17:51:01,444
|
222 |
+
Results:
|
223 |
+
- F-score (micro) 0.8493
|
224 |
+
- F-score (macro) 0.7512
|
225 |
+
- Accuracy 0.7473
|
226 |
+
|
227 |
+
By class:
|
228 |
+
precision recall f1-score support
|
229 |
+
|
230 |
+
PER 0.8596 0.8382 0.8487 482
|
231 |
+
LOC 0.9236 0.8712 0.8966 458
|
232 |
+
ORG 0.5849 0.4493 0.5082 69
|
233 |
+
|
234 |
+
micro avg 0.8733 0.8266 0.8493 1009
|
235 |
+
macro avg 0.7894 0.7195 0.7512 1009
|
236 |
+
weighted avg 0.8699 0.8266 0.8472 1009
|
237 |
+
|
238 |
+
2023-10-17 17:51:01,445 ----------------------------------------------------------------------------------------------------
|