|
2023-10-12 16:33:19,371 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,373 Model: "SequenceTagger( |
|
(embeddings): ByT5Embeddings( |
|
(model): T5EncoderModel( |
|
(shared): Embedding(384, 1472) |
|
(encoder): T5Stack( |
|
(embed_tokens): Embedding(384, 1472) |
|
(block): ModuleList( |
|
(0): T5Block( |
|
(layer): ModuleList( |
|
(0): T5LayerSelfAttention( |
|
(SelfAttention): T5Attention( |
|
(q): Linear(in_features=1472, out_features=384, bias=False) |
|
(k): Linear(in_features=1472, out_features=384, bias=False) |
|
(v): Linear(in_features=1472, out_features=384, bias=False) |
|
(o): Linear(in_features=384, out_features=1472, bias=False) |
|
(relative_attention_bias): Embedding(32, 6) |
|
) |
|
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(1): T5LayerFF( |
|
(DenseReluDense): T5DenseGatedActDense( |
|
(wi_0): Linear(in_features=1472, out_features=3584, bias=False) |
|
(wi_1): Linear(in_features=1472, out_features=3584, bias=False) |
|
(wo): Linear(in_features=3584, out_features=1472, bias=False) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
(act): NewGELUActivation() |
|
) |
|
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
(1-11): 11 x T5Block( |
|
(layer): ModuleList( |
|
(0): T5LayerSelfAttention( |
|
(SelfAttention): T5Attention( |
|
(q): Linear(in_features=1472, out_features=384, bias=False) |
|
(k): Linear(in_features=1472, out_features=384, bias=False) |
|
(v): Linear(in_features=1472, out_features=384, bias=False) |
|
(o): Linear(in_features=384, out_features=1472, bias=False) |
|
) |
|
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(1): T5LayerFF( |
|
(DenseReluDense): T5DenseGatedActDense( |
|
(wi_0): Linear(in_features=1472, out_features=3584, bias=False) |
|
(wi_1): Linear(in_features=1472, out_features=3584, bias=False) |
|
(wo): Linear(in_features=3584, out_features=1472, bias=False) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
(act): NewGELUActivation() |
|
) |
|
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=1472, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-12 16:33:19,373 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,374 MultiCorpus: 5777 train + 722 dev + 723 test sentences |
|
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl |
|
2023-10-12 16:33:19,374 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,374 Train: 5777 sentences |
|
2023-10-12 16:33:19,374 (train_with_dev=False, train_with_test=False) |
|
2023-10-12 16:33:19,374 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,374 Training Params: |
|
2023-10-12 16:33:19,374 - learning_rate: "0.00016" |
|
2023-10-12 16:33:19,374 - mini_batch_size: "4" |
|
2023-10-12 16:33:19,374 - max_epochs: "10" |
|
2023-10-12 16:33:19,374 - shuffle: "True" |
|
2023-10-12 16:33:19,374 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,374 Plugins: |
|
2023-10-12 16:33:19,374 - TensorboardLogger |
|
2023-10-12 16:33:19,375 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-12 16:33:19,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,375 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-12 16:33:19,375 - metric: "('micro avg', 'f1-score')" |
|
2023-10-12 16:33:19,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,375 Computation: |
|
2023-10-12 16:33:19,375 - compute on device: cuda:0 |
|
2023-10-12 16:33:19,375 - embedding storage: none |
|
2023-10-12 16:33:19,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,375 Model training base path: "hmbench-icdar/nl-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-12 16:33:19,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:33:19,375 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-12 16:34:03,482 epoch 1 - iter 144/1445 - loss 2.56300254 - time (sec): 44.10 - samples/sec: 405.02 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-12 16:34:47,886 epoch 1 - iter 288/1445 - loss 2.38526191 - time (sec): 88.51 - samples/sec: 407.78 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-12 16:35:30,464 epoch 1 - iter 432/1445 - loss 2.13289859 - time (sec): 131.09 - samples/sec: 405.11 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-12 16:36:13,934 epoch 1 - iter 576/1445 - loss 1.84024411 - time (sec): 174.56 - samples/sec: 405.11 - lr: 0.000064 - momentum: 0.000000 |
|
2023-10-12 16:36:56,656 epoch 1 - iter 720/1445 - loss 1.55933001 - time (sec): 217.28 - samples/sec: 406.68 - lr: 0.000080 - momentum: 0.000000 |
|
2023-10-12 16:37:37,250 epoch 1 - iter 864/1445 - loss 1.35312862 - time (sec): 257.87 - samples/sec: 407.98 - lr: 0.000096 - momentum: 0.000000 |
|
2023-10-12 16:38:19,681 epoch 1 - iter 1008/1445 - loss 1.19495096 - time (sec): 300.30 - samples/sec: 407.48 - lr: 0.000112 - momentum: 0.000000 |
|
2023-10-12 16:39:02,528 epoch 1 - iter 1152/1445 - loss 1.06319855 - time (sec): 343.15 - samples/sec: 409.47 - lr: 0.000127 - momentum: 0.000000 |
|
2023-10-12 16:39:44,972 epoch 1 - iter 1296/1445 - loss 0.96042465 - time (sec): 385.59 - samples/sec: 412.03 - lr: 0.000143 - momentum: 0.000000 |
|
2023-10-12 16:40:27,593 epoch 1 - iter 1440/1445 - loss 0.88488446 - time (sec): 428.22 - samples/sec: 410.24 - lr: 0.000159 - momentum: 0.000000 |
|
2023-10-12 16:40:28,827 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:40:28,828 EPOCH 1 done: loss 0.8825 - lr: 0.000159 |
|
2023-10-12 16:40:48,696 DEV : loss 0.18981926143169403 - f1-score (micro avg) 0.3887 |
|
2023-10-12 16:40:48,730 saving best model |
|
2023-10-12 16:40:49,705 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:41:32,871 epoch 2 - iter 144/1445 - loss 0.13981313 - time (sec): 43.16 - samples/sec: 410.92 - lr: 0.000158 - momentum: 0.000000 |
|
2023-10-12 16:42:13,700 epoch 2 - iter 288/1445 - loss 0.13956803 - time (sec): 83.99 - samples/sec: 415.01 - lr: 0.000156 - momentum: 0.000000 |
|
2023-10-12 16:42:54,732 epoch 2 - iter 432/1445 - loss 0.13836300 - time (sec): 125.02 - samples/sec: 417.55 - lr: 0.000155 - momentum: 0.000000 |
|
2023-10-12 16:43:36,244 epoch 2 - iter 576/1445 - loss 0.13112203 - time (sec): 166.54 - samples/sec: 417.27 - lr: 0.000153 - momentum: 0.000000 |
|
2023-10-12 16:44:19,336 epoch 2 - iter 720/1445 - loss 0.12498734 - time (sec): 209.63 - samples/sec: 409.49 - lr: 0.000151 - momentum: 0.000000 |
|
2023-10-12 16:45:03,660 epoch 2 - iter 864/1445 - loss 0.12218588 - time (sec): 253.95 - samples/sec: 407.93 - lr: 0.000149 - momentum: 0.000000 |
|
2023-10-12 16:45:46,648 epoch 2 - iter 1008/1445 - loss 0.12188956 - time (sec): 296.94 - samples/sec: 410.26 - lr: 0.000148 - momentum: 0.000000 |
|
2023-10-12 16:46:27,790 epoch 2 - iter 1152/1445 - loss 0.11964934 - time (sec): 338.08 - samples/sec: 413.86 - lr: 0.000146 - momentum: 0.000000 |
|
2023-10-12 16:47:09,340 epoch 2 - iter 1296/1445 - loss 0.11521379 - time (sec): 379.63 - samples/sec: 415.90 - lr: 0.000144 - momentum: 0.000000 |
|
2023-10-12 16:47:50,210 epoch 2 - iter 1440/1445 - loss 0.11336959 - time (sec): 420.50 - samples/sec: 417.31 - lr: 0.000142 - momentum: 0.000000 |
|
2023-10-12 16:47:51,614 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:47:51,614 EPOCH 2 done: loss 0.1131 - lr: 0.000142 |
|
2023-10-12 16:48:12,874 DEV : loss 0.09119933843612671 - f1-score (micro avg) 0.8308 |
|
2023-10-12 16:48:12,904 saving best model |
|
2023-10-12 16:48:15,491 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:48:57,020 epoch 3 - iter 144/1445 - loss 0.07985533 - time (sec): 41.52 - samples/sec: 405.49 - lr: 0.000140 - momentum: 0.000000 |
|
2023-10-12 16:49:38,239 epoch 3 - iter 288/1445 - loss 0.07523997 - time (sec): 82.74 - samples/sec: 418.79 - lr: 0.000139 - momentum: 0.000000 |
|
2023-10-12 16:50:18,976 epoch 3 - iter 432/1445 - loss 0.07488360 - time (sec): 123.48 - samples/sec: 419.10 - lr: 0.000137 - momentum: 0.000000 |
|
2023-10-12 16:50:59,095 epoch 3 - iter 576/1445 - loss 0.07112822 - time (sec): 163.60 - samples/sec: 421.60 - lr: 0.000135 - momentum: 0.000000 |
|
2023-10-12 16:51:39,727 epoch 3 - iter 720/1445 - loss 0.07107570 - time (sec): 204.23 - samples/sec: 423.37 - lr: 0.000133 - momentum: 0.000000 |
|
2023-10-12 16:52:23,561 epoch 3 - iter 864/1445 - loss 0.07062393 - time (sec): 248.06 - samples/sec: 425.40 - lr: 0.000132 - momentum: 0.000000 |
|
2023-10-12 16:53:06,138 epoch 3 - iter 1008/1445 - loss 0.06769948 - time (sec): 290.64 - samples/sec: 424.70 - lr: 0.000130 - momentum: 0.000000 |
|
2023-10-12 16:53:47,855 epoch 3 - iter 1152/1445 - loss 0.06676501 - time (sec): 332.36 - samples/sec: 423.10 - lr: 0.000128 - momentum: 0.000000 |
|
2023-10-12 16:54:29,300 epoch 3 - iter 1296/1445 - loss 0.06508146 - time (sec): 373.80 - samples/sec: 422.23 - lr: 0.000126 - momentum: 0.000000 |
|
2023-10-12 16:55:11,121 epoch 3 - iter 1440/1445 - loss 0.06435452 - time (sec): 415.62 - samples/sec: 422.69 - lr: 0.000125 - momentum: 0.000000 |
|
2023-10-12 16:55:12,348 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:55:12,349 EPOCH 3 done: loss 0.0644 - lr: 0.000125 |
|
2023-10-12 16:55:32,850 DEV : loss 0.06621405482292175 - f1-score (micro avg) 0.8638 |
|
2023-10-12 16:55:32,879 saving best model |
|
2023-10-12 16:55:35,449 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 16:56:16,669 epoch 4 - iter 144/1445 - loss 0.03491763 - time (sec): 41.22 - samples/sec: 458.62 - lr: 0.000123 - momentum: 0.000000 |
|
2023-10-12 16:56:55,734 epoch 4 - iter 288/1445 - loss 0.03857362 - time (sec): 80.28 - samples/sec: 436.36 - lr: 0.000121 - momentum: 0.000000 |
|
2023-10-12 16:57:35,889 epoch 4 - iter 432/1445 - loss 0.03858829 - time (sec): 120.43 - samples/sec: 429.12 - lr: 0.000119 - momentum: 0.000000 |
|
2023-10-12 16:58:16,860 epoch 4 - iter 576/1445 - loss 0.04126412 - time (sec): 161.41 - samples/sec: 427.20 - lr: 0.000117 - momentum: 0.000000 |
|
2023-10-12 16:58:57,647 epoch 4 - iter 720/1445 - loss 0.04127926 - time (sec): 202.19 - samples/sec: 425.21 - lr: 0.000116 - momentum: 0.000000 |
|
2023-10-12 16:59:40,966 epoch 4 - iter 864/1445 - loss 0.04331915 - time (sec): 245.51 - samples/sec: 423.87 - lr: 0.000114 - momentum: 0.000000 |
|
2023-10-12 17:00:22,245 epoch 4 - iter 1008/1445 - loss 0.04325634 - time (sec): 286.79 - samples/sec: 429.29 - lr: 0.000112 - momentum: 0.000000 |
|
2023-10-12 17:01:01,932 epoch 4 - iter 1152/1445 - loss 0.04376823 - time (sec): 326.48 - samples/sec: 429.38 - lr: 0.000110 - momentum: 0.000000 |
|
2023-10-12 17:01:41,831 epoch 4 - iter 1296/1445 - loss 0.04471474 - time (sec): 366.38 - samples/sec: 430.38 - lr: 0.000109 - momentum: 0.000000 |
|
2023-10-12 17:02:22,332 epoch 4 - iter 1440/1445 - loss 0.04407434 - time (sec): 406.88 - samples/sec: 431.94 - lr: 0.000107 - momentum: 0.000000 |
|
2023-10-12 17:02:23,481 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:02:23,481 EPOCH 4 done: loss 0.0441 - lr: 0.000107 |
|
2023-10-12 17:02:44,195 DEV : loss 0.08768334984779358 - f1-score (micro avg) 0.8564 |
|
2023-10-12 17:02:44,226 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:03:24,221 epoch 5 - iter 144/1445 - loss 0.01928414 - time (sec): 39.99 - samples/sec: 424.43 - lr: 0.000105 - momentum: 0.000000 |
|
2023-10-12 17:04:04,655 epoch 5 - iter 288/1445 - loss 0.02782982 - time (sec): 80.43 - samples/sec: 427.60 - lr: 0.000103 - momentum: 0.000000 |
|
2023-10-12 17:04:44,485 epoch 5 - iter 432/1445 - loss 0.02750831 - time (sec): 120.26 - samples/sec: 433.41 - lr: 0.000101 - momentum: 0.000000 |
|
2023-10-12 17:05:25,173 epoch 5 - iter 576/1445 - loss 0.02988547 - time (sec): 160.95 - samples/sec: 438.34 - lr: 0.000100 - momentum: 0.000000 |
|
2023-10-12 17:06:05,256 epoch 5 - iter 720/1445 - loss 0.03160699 - time (sec): 201.03 - samples/sec: 438.23 - lr: 0.000098 - momentum: 0.000000 |
|
2023-10-12 17:06:45,729 epoch 5 - iter 864/1445 - loss 0.03162838 - time (sec): 241.50 - samples/sec: 437.51 - lr: 0.000096 - momentum: 0.000000 |
|
2023-10-12 17:07:24,736 epoch 5 - iter 1008/1445 - loss 0.03117068 - time (sec): 280.51 - samples/sec: 435.41 - lr: 0.000094 - momentum: 0.000000 |
|
2023-10-12 17:08:05,615 epoch 5 - iter 1152/1445 - loss 0.03085839 - time (sec): 321.39 - samples/sec: 435.33 - lr: 0.000093 - momentum: 0.000000 |
|
2023-10-12 17:08:46,790 epoch 5 - iter 1296/1445 - loss 0.03070485 - time (sec): 362.56 - samples/sec: 434.52 - lr: 0.000091 - momentum: 0.000000 |
|
2023-10-12 17:09:27,677 epoch 5 - iter 1440/1445 - loss 0.03200208 - time (sec): 403.45 - samples/sec: 435.47 - lr: 0.000089 - momentum: 0.000000 |
|
2023-10-12 17:09:28,879 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:09:28,879 EPOCH 5 done: loss 0.0319 - lr: 0.000089 |
|
2023-10-12 17:09:49,304 DEV : loss 0.10739118605852127 - f1-score (micro avg) 0.8495 |
|
2023-10-12 17:09:49,334 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:10:30,193 epoch 6 - iter 144/1445 - loss 0.03926076 - time (sec): 40.86 - samples/sec: 439.95 - lr: 0.000087 - momentum: 0.000000 |
|
2023-10-12 17:11:09,843 epoch 6 - iter 288/1445 - loss 0.03195608 - time (sec): 80.51 - samples/sec: 434.47 - lr: 0.000085 - momentum: 0.000000 |
|
2023-10-12 17:11:50,454 epoch 6 - iter 432/1445 - loss 0.03002443 - time (sec): 121.12 - samples/sec: 436.80 - lr: 0.000084 - momentum: 0.000000 |
|
2023-10-12 17:12:31,958 epoch 6 - iter 576/1445 - loss 0.02767328 - time (sec): 162.62 - samples/sec: 441.01 - lr: 0.000082 - momentum: 0.000000 |
|
2023-10-12 17:13:10,662 epoch 6 - iter 720/1445 - loss 0.02642560 - time (sec): 201.33 - samples/sec: 434.28 - lr: 0.000080 - momentum: 0.000000 |
|
2023-10-12 17:13:52,438 epoch 6 - iter 864/1445 - loss 0.02552455 - time (sec): 243.10 - samples/sec: 439.35 - lr: 0.000078 - momentum: 0.000000 |
|
2023-10-12 17:14:31,894 epoch 6 - iter 1008/1445 - loss 0.02476366 - time (sec): 282.56 - samples/sec: 437.47 - lr: 0.000076 - momentum: 0.000000 |
|
2023-10-12 17:15:12,546 epoch 6 - iter 1152/1445 - loss 0.02469782 - time (sec): 323.21 - samples/sec: 436.99 - lr: 0.000075 - momentum: 0.000000 |
|
2023-10-12 17:15:54,048 epoch 6 - iter 1296/1445 - loss 0.02478677 - time (sec): 364.71 - samples/sec: 435.29 - lr: 0.000073 - momentum: 0.000000 |
|
2023-10-12 17:16:33,885 epoch 6 - iter 1440/1445 - loss 0.02484737 - time (sec): 404.55 - samples/sec: 434.17 - lr: 0.000071 - momentum: 0.000000 |
|
2023-10-12 17:16:35,141 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:16:35,141 EPOCH 6 done: loss 0.0248 - lr: 0.000071 |
|
2023-10-12 17:16:56,074 DEV : loss 0.11206483840942383 - f1-score (micro avg) 0.8582 |
|
2023-10-12 17:16:56,105 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:17:37,350 epoch 7 - iter 144/1445 - loss 0.03196159 - time (sec): 41.24 - samples/sec: 405.21 - lr: 0.000069 - momentum: 0.000000 |
|
2023-10-12 17:18:21,847 epoch 7 - iter 288/1445 - loss 0.02494608 - time (sec): 85.74 - samples/sec: 417.58 - lr: 0.000068 - momentum: 0.000000 |
|
2023-10-12 17:19:04,928 epoch 7 - iter 432/1445 - loss 0.02528055 - time (sec): 128.82 - samples/sec: 416.07 - lr: 0.000066 - momentum: 0.000000 |
|
2023-10-12 17:19:47,446 epoch 7 - iter 576/1445 - loss 0.02201332 - time (sec): 171.34 - samples/sec: 414.68 - lr: 0.000064 - momentum: 0.000000 |
|
2023-10-12 17:20:30,277 epoch 7 - iter 720/1445 - loss 0.02177977 - time (sec): 214.17 - samples/sec: 414.34 - lr: 0.000062 - momentum: 0.000000 |
|
2023-10-12 17:21:12,767 epoch 7 - iter 864/1445 - loss 0.02046133 - time (sec): 256.66 - samples/sec: 416.64 - lr: 0.000060 - momentum: 0.000000 |
|
2023-10-12 17:21:54,758 epoch 7 - iter 1008/1445 - loss 0.02080315 - time (sec): 298.65 - samples/sec: 419.29 - lr: 0.000059 - momentum: 0.000000 |
|
2023-10-12 17:22:35,231 epoch 7 - iter 1152/1445 - loss 0.01995810 - time (sec): 339.12 - samples/sec: 420.44 - lr: 0.000057 - momentum: 0.000000 |
|
2023-10-12 17:23:15,074 epoch 7 - iter 1296/1445 - loss 0.01959775 - time (sec): 378.97 - samples/sec: 419.20 - lr: 0.000055 - momentum: 0.000000 |
|
2023-10-12 17:23:57,171 epoch 7 - iter 1440/1445 - loss 0.01919288 - time (sec): 421.06 - samples/sec: 417.48 - lr: 0.000053 - momentum: 0.000000 |
|
2023-10-12 17:23:58,329 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:23:58,330 EPOCH 7 done: loss 0.0191 - lr: 0.000053 |
|
2023-10-12 17:24:20,533 DEV : loss 0.12889063358306885 - f1-score (micro avg) 0.853 |
|
2023-10-12 17:24:20,562 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:25:01,698 epoch 8 - iter 144/1445 - loss 0.01021579 - time (sec): 41.13 - samples/sec: 434.73 - lr: 0.000052 - momentum: 0.000000 |
|
2023-10-12 17:25:42,787 epoch 8 - iter 288/1445 - loss 0.01004474 - time (sec): 82.22 - samples/sec: 437.18 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-12 17:26:23,418 epoch 8 - iter 432/1445 - loss 0.01117270 - time (sec): 122.85 - samples/sec: 435.97 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-12 17:27:05,836 epoch 8 - iter 576/1445 - loss 0.01033342 - time (sec): 165.27 - samples/sec: 437.03 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-12 17:27:45,951 epoch 8 - iter 720/1445 - loss 0.01317246 - time (sec): 205.39 - samples/sec: 428.88 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-12 17:28:26,943 epoch 8 - iter 864/1445 - loss 0.01310077 - time (sec): 246.38 - samples/sec: 426.90 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-12 17:29:07,910 epoch 8 - iter 1008/1445 - loss 0.01364110 - time (sec): 287.35 - samples/sec: 426.32 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-12 17:29:50,319 epoch 8 - iter 1152/1445 - loss 0.01391426 - time (sec): 329.75 - samples/sec: 425.34 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-12 17:30:32,149 epoch 8 - iter 1296/1445 - loss 0.01330664 - time (sec): 371.58 - samples/sec: 424.88 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-12 17:31:14,018 epoch 8 - iter 1440/1445 - loss 0.01380146 - time (sec): 413.45 - samples/sec: 425.19 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-12 17:31:15,188 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:31:15,188 EPOCH 8 done: loss 0.0138 - lr: 0.000036 |
|
2023-10-12 17:31:35,933 DEV : loss 0.12251030653715134 - f1-score (micro avg) 0.8642 |
|
2023-10-12 17:31:35,963 saving best model |
|
2023-10-12 17:31:36,938 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:32:18,958 epoch 9 - iter 144/1445 - loss 0.00745630 - time (sec): 42.02 - samples/sec: 437.46 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-12 17:33:00,161 epoch 9 - iter 288/1445 - loss 0.00761895 - time (sec): 83.22 - samples/sec: 422.78 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-12 17:33:40,433 epoch 9 - iter 432/1445 - loss 0.00995441 - time (sec): 123.49 - samples/sec: 422.87 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-12 17:34:21,456 epoch 9 - iter 576/1445 - loss 0.00880978 - time (sec): 164.52 - samples/sec: 423.26 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-12 17:35:02,766 epoch 9 - iter 720/1445 - loss 0.00785433 - time (sec): 205.83 - samples/sec: 427.36 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-12 17:35:43,814 epoch 9 - iter 864/1445 - loss 0.00778198 - time (sec): 246.87 - samples/sec: 427.54 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-12 17:36:24,978 epoch 9 - iter 1008/1445 - loss 0.00817747 - time (sec): 288.04 - samples/sec: 430.09 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-12 17:37:05,337 epoch 9 - iter 1152/1445 - loss 0.00847105 - time (sec): 328.40 - samples/sec: 429.48 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-12 17:37:45,918 epoch 9 - iter 1296/1445 - loss 0.00923305 - time (sec): 368.98 - samples/sec: 426.79 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-12 17:38:28,699 epoch 9 - iter 1440/1445 - loss 0.00900821 - time (sec): 411.76 - samples/sec: 425.30 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-12 17:38:30,718 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:38:30,718 EPOCH 9 done: loss 0.0096 - lr: 0.000018 |
|
2023-10-12 17:38:52,760 DEV : loss 0.14077246189117432 - f1-score (micro avg) 0.8633 |
|
2023-10-12 17:38:52,801 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:39:37,018 epoch 10 - iter 144/1445 - loss 0.01174630 - time (sec): 44.21 - samples/sec: 426.17 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-12 17:40:20,486 epoch 10 - iter 288/1445 - loss 0.01002501 - time (sec): 87.68 - samples/sec: 415.57 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-12 17:41:04,188 epoch 10 - iter 432/1445 - loss 0.00910839 - time (sec): 131.39 - samples/sec: 407.70 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-12 17:41:48,780 epoch 10 - iter 576/1445 - loss 0.00824494 - time (sec): 175.98 - samples/sec: 405.69 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-12 17:42:33,468 epoch 10 - iter 720/1445 - loss 0.00769188 - time (sec): 220.67 - samples/sec: 404.45 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-12 17:43:20,283 epoch 10 - iter 864/1445 - loss 0.00752313 - time (sec): 267.48 - samples/sec: 403.45 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-12 17:44:01,105 epoch 10 - iter 1008/1445 - loss 0.00804398 - time (sec): 308.30 - samples/sec: 401.60 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-12 17:44:43,927 epoch 10 - iter 1152/1445 - loss 0.00739720 - time (sec): 351.12 - samples/sec: 405.21 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-12 17:45:25,058 epoch 10 - iter 1296/1445 - loss 0.00730540 - time (sec): 392.26 - samples/sec: 404.88 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-12 17:46:07,507 epoch 10 - iter 1440/1445 - loss 0.00754475 - time (sec): 434.70 - samples/sec: 404.40 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-12 17:46:08,714 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:46:08,715 EPOCH 10 done: loss 0.0075 - lr: 0.000000 |
|
2023-10-12 17:46:30,653 DEV : loss 0.14291653037071228 - f1-score (micro avg) 0.8604 |
|
2023-10-12 17:46:31,574 ---------------------------------------------------------------------------------------------------- |
|
2023-10-12 17:46:31,576 Loading model from best epoch ... |
|
2023-10-12 17:46:35,453 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG |
|
2023-10-12 17:46:59,023 |
|
Results: |
|
- F-score (micro) 0.851 |
|
- F-score (macro) 0.744 |
|
- Accuracy 0.7524 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
PER 0.8621 0.8693 0.8657 482 |
|
LOC 0.9277 0.8690 0.8974 458 |
|
ORG 0.4474 0.4928 0.4690 69 |
|
|
|
micro avg 0.8587 0.8434 0.8510 1009 |
|
macro avg 0.7457 0.7437 0.7440 1009 |
|
weighted avg 0.8636 0.8434 0.8530 1009 |
|
|
|
2023-10-12 17:46:59,023 ---------------------------------------------------------------------------------------------------- |
|
|