Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697668800.46dc0c540dd0.3571.10 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c745a20d54264ca4c69bc48d5f2c4b812cebe845504f3ee31f599fb20314a9de
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:40:19 0.0000 1.1102 0.3578 0.0000 0.0000 0.0000 0.0000
|
3 |
+
2 22:40:39 0.0000 0.2362 0.2550 0.7872 0.1147 0.2002 0.1113
|
4 |
+
3 22:40:58 0.0000 0.1949 0.2252 0.6936 0.2128 0.3257 0.1966
|
5 |
+
4 22:41:18 0.0000 0.1797 0.2068 0.6376 0.2800 0.3891 0.2455
|
6 |
+
5 22:41:37 0.0000 0.1682 0.2108 0.6563 0.3058 0.4172 0.2698
|
7 |
+
6 22:41:57 0.0000 0.1620 0.1961 0.6224 0.3388 0.4388 0.2885
|
8 |
+
7 22:42:17 0.0000 0.1557 0.1865 0.6310 0.4081 0.4956 0.3382
|
9 |
+
8 22:42:37 0.0000 0.1509 0.1936 0.6354 0.3709 0.4684 0.3130
|
10 |
+
9 22:42:57 0.0000 0.1474 0.1860 0.6362 0.4029 0.4934 0.3356
|
11 |
+
10 22:43:17 0.0000 0.1456 0.1870 0.6328 0.3988 0.4892 0.3319
|
runs/events.out.tfevents.1697668800.46dc0c540dd0.3571.10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f452b25e5546554f08b8879508fa93f250ce952af343b7592826cd79daf8e603
|
3 |
+
size 407048
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 22:40:00,249 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 22:40:00,249 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 22:40:00,249 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 22:40:00,249 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
53 |
+
2023-10-18 22:40:00,249 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 22:40:00,249 Train: 5777 sentences
|
55 |
+
2023-10-18 22:40:00,249 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 22:40:00,250 Training Params:
|
58 |
+
2023-10-18 22:40:00,250 - learning_rate: "3e-05"
|
59 |
+
2023-10-18 22:40:00,250 - mini_batch_size: "8"
|
60 |
+
2023-10-18 22:40:00,250 - max_epochs: "10"
|
61 |
+
2023-10-18 22:40:00,250 - shuffle: "True"
|
62 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 22:40:00,250 Plugins:
|
64 |
+
2023-10-18 22:40:00,250 - TensorboardLogger
|
65 |
+
2023-10-18 22:40:00,250 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 22:40:00,250 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 22:40:00,250 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 22:40:00,250 Computation:
|
71 |
+
2023-10-18 22:40:00,250 - compute on device: cuda:0
|
72 |
+
2023-10-18 22:40:00,250 - embedding storage: none
|
73 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 22:40:00,250 Model training base path: "hmbench-icdar/nl-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
75 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 22:40:00,250 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 22:40:00,250 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 22:40:02,113 epoch 1 - iter 72/723 - loss 2.98841079 - time (sec): 1.86 - samples/sec: 9578.47 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-18 22:40:04,053 epoch 1 - iter 144/723 - loss 2.79139642 - time (sec): 3.80 - samples/sec: 9516.22 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-18 22:40:05,867 epoch 1 - iter 216/723 - loss 2.52716576 - time (sec): 5.62 - samples/sec: 9503.17 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-18 22:40:07,667 epoch 1 - iter 288/723 - loss 2.18597493 - time (sec): 7.42 - samples/sec: 9593.00 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-18 22:40:09,442 epoch 1 - iter 360/723 - loss 1.85823175 - time (sec): 9.19 - samples/sec: 9731.15 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-18 22:40:11,226 epoch 1 - iter 432/723 - loss 1.61794529 - time (sec): 10.98 - samples/sec: 9752.10 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-18 22:40:13,025 epoch 1 - iter 504/723 - loss 1.43043055 - time (sec): 12.77 - samples/sec: 9802.57 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-18 22:40:14,790 epoch 1 - iter 576/723 - loss 1.29820059 - time (sec): 14.54 - samples/sec: 9794.94 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-18 22:40:16,555 epoch 1 - iter 648/723 - loss 1.19724166 - time (sec): 16.30 - samples/sec: 9758.71 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-18 22:40:18,265 epoch 1 - iter 720/723 - loss 1.11187930 - time (sec): 18.01 - samples/sec: 9759.03 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-18 22:40:18,320 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 22:40:18,320 EPOCH 1 done: loss 1.1102 - lr: 0.000030
|
90 |
+
2023-10-18 22:40:19,582 DEV : loss 0.35777369141578674 - f1-score (micro avg) 0.0
|
91 |
+
2023-10-18 22:40:19,596 ----------------------------------------------------------------------------------------------------
|
92 |
+
2023-10-18 22:40:21,365 epoch 2 - iter 72/723 - loss 0.27341211 - time (sec): 1.77 - samples/sec: 9574.80 - lr: 0.000030 - momentum: 0.000000
|
93 |
+
2023-10-18 22:40:23,118 epoch 2 - iter 144/723 - loss 0.27156084 - time (sec): 3.52 - samples/sec: 9803.83 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-18 22:40:24,968 epoch 2 - iter 216/723 - loss 0.25524188 - time (sec): 5.37 - samples/sec: 9778.40 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-18 22:40:26,723 epoch 2 - iter 288/723 - loss 0.25718151 - time (sec): 7.13 - samples/sec: 9726.70 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-18 22:40:28,489 epoch 2 - iter 360/723 - loss 0.25119017 - time (sec): 8.89 - samples/sec: 9725.42 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-18 22:40:30,277 epoch 2 - iter 432/723 - loss 0.24390917 - time (sec): 10.68 - samples/sec: 9774.04 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-18 22:40:32,050 epoch 2 - iter 504/723 - loss 0.24273201 - time (sec): 12.45 - samples/sec: 9809.63 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-18 22:40:33,864 epoch 2 - iter 576/723 - loss 0.24040013 - time (sec): 14.27 - samples/sec: 9892.91 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-18 22:40:35,585 epoch 2 - iter 648/723 - loss 0.23365611 - time (sec): 15.99 - samples/sec: 9932.90 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-18 22:40:37,385 epoch 2 - iter 720/723 - loss 0.23607899 - time (sec): 17.79 - samples/sec: 9875.14 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-18 22:40:37,455 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-18 22:40:37,455 EPOCH 2 done: loss 0.2362 - lr: 0.000027
|
104 |
+
2023-10-18 22:40:39,578 DEV : loss 0.2550312876701355 - f1-score (micro avg) 0.2002
|
105 |
+
2023-10-18 22:40:39,592 saving best model
|
106 |
+
2023-10-18 22:40:39,622 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-18 22:40:41,214 epoch 3 - iter 72/723 - loss 0.22079626 - time (sec): 1.59 - samples/sec: 10781.78 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-18 22:40:42,794 epoch 3 - iter 144/723 - loss 0.20244048 - time (sec): 3.17 - samples/sec: 11109.25 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-18 22:40:44,423 epoch 3 - iter 216/723 - loss 0.19849172 - time (sec): 4.80 - samples/sec: 11002.12 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-18 22:40:46,182 epoch 3 - iter 288/723 - loss 0.19769252 - time (sec): 6.56 - samples/sec: 10779.32 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-18 22:40:47,893 epoch 3 - iter 360/723 - loss 0.19995418 - time (sec): 8.27 - samples/sec: 10451.44 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-18 22:40:49,679 epoch 3 - iter 432/723 - loss 0.20011392 - time (sec): 10.06 - samples/sec: 10377.07 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-18 22:40:51,486 epoch 3 - iter 504/723 - loss 0.19929608 - time (sec): 11.86 - samples/sec: 10340.39 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-18 22:40:53,195 epoch 3 - iter 576/723 - loss 0.20030929 - time (sec): 13.57 - samples/sec: 10252.78 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-18 22:40:54,998 epoch 3 - iter 648/723 - loss 0.20073613 - time (sec): 15.38 - samples/sec: 10270.49 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-18 22:40:56,810 epoch 3 - iter 720/723 - loss 0.19498318 - time (sec): 17.19 - samples/sec: 10222.93 - lr: 0.000023 - momentum: 0.000000
|
117 |
+
2023-10-18 22:40:56,873 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-18 22:40:56,873 EPOCH 3 done: loss 0.1949 - lr: 0.000023
|
119 |
+
2023-10-18 22:40:58,634 DEV : loss 0.2251613438129425 - f1-score (micro avg) 0.3257
|
120 |
+
2023-10-18 22:40:58,648 saving best model
|
121 |
+
2023-10-18 22:40:58,686 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-18 22:41:00,437 epoch 4 - iter 72/723 - loss 0.19403979 - time (sec): 1.75 - samples/sec: 10149.67 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-18 22:41:02,183 epoch 4 - iter 144/723 - loss 0.18784146 - time (sec): 3.50 - samples/sec: 9748.92 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-18 22:41:03,952 epoch 4 - iter 216/723 - loss 0.19203285 - time (sec): 5.26 - samples/sec: 9895.01 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-18 22:41:05,781 epoch 4 - iter 288/723 - loss 0.18324681 - time (sec): 7.09 - samples/sec: 9871.53 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-18 22:41:07,582 epoch 4 - iter 360/723 - loss 0.18156486 - time (sec): 8.89 - samples/sec: 9953.49 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-18 22:41:09,325 epoch 4 - iter 432/723 - loss 0.18116754 - time (sec): 10.64 - samples/sec: 9991.78 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-18 22:41:11,053 epoch 4 - iter 504/723 - loss 0.18093047 - time (sec): 12.37 - samples/sec: 9946.49 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-18 22:41:12,847 epoch 4 - iter 576/723 - loss 0.18201373 - time (sec): 14.16 - samples/sec: 9930.77 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-18 22:41:14,597 epoch 4 - iter 648/723 - loss 0.18085010 - time (sec): 15.91 - samples/sec: 9954.75 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-18 22:41:16,329 epoch 4 - iter 720/723 - loss 0.17999634 - time (sec): 17.64 - samples/sec: 9957.84 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-18 22:41:16,401 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-18 22:41:16,401 EPOCH 4 done: loss 0.1797 - lr: 0.000020
|
134 |
+
2023-10-18 22:41:18,476 DEV : loss 0.20678313076496124 - f1-score (micro avg) 0.3891
|
135 |
+
2023-10-18 22:41:18,490 saving best model
|
136 |
+
2023-10-18 22:41:18,525 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-18 22:41:20,277 epoch 5 - iter 72/723 - loss 0.17834339 - time (sec): 1.75 - samples/sec: 9709.97 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2023-10-18 22:41:22,062 epoch 5 - iter 144/723 - loss 0.16479979 - time (sec): 3.54 - samples/sec: 9719.79 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-18 22:41:23,813 epoch 5 - iter 216/723 - loss 0.16544296 - time (sec): 5.29 - samples/sec: 9775.51 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-18 22:41:25,599 epoch 5 - iter 288/723 - loss 0.16908757 - time (sec): 7.07 - samples/sec: 9698.46 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-18 22:41:27,411 epoch 5 - iter 360/723 - loss 0.16724889 - time (sec): 8.89 - samples/sec: 9833.64 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-18 22:41:29,173 epoch 5 - iter 432/723 - loss 0.16559838 - time (sec): 10.65 - samples/sec: 9937.96 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-18 22:41:30,855 epoch 5 - iter 504/723 - loss 0.16547999 - time (sec): 12.33 - samples/sec: 9999.51 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-18 22:41:32,671 epoch 5 - iter 576/723 - loss 0.16944376 - time (sec): 14.15 - samples/sec: 10007.08 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-18 22:41:34,392 epoch 5 - iter 648/723 - loss 0.17032973 - time (sec): 15.87 - samples/sec: 9953.67 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-18 22:41:36,124 epoch 5 - iter 720/723 - loss 0.16793137 - time (sec): 17.60 - samples/sec: 9971.25 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-18 22:41:36,187 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-18 22:41:36,187 EPOCH 5 done: loss 0.1682 - lr: 0.000017
|
149 |
+
2023-10-18 22:41:37,950 DEV : loss 0.21079857647418976 - f1-score (micro avg) 0.4172
|
150 |
+
2023-10-18 22:41:37,965 saving best model
|
151 |
+
2023-10-18 22:41:38,003 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-18 22:41:39,687 epoch 6 - iter 72/723 - loss 0.15977195 - time (sec): 1.68 - samples/sec: 9982.07 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-18 22:41:41,451 epoch 6 - iter 144/723 - loss 0.16016708 - time (sec): 3.45 - samples/sec: 10061.70 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-18 22:41:43,215 epoch 6 - iter 216/723 - loss 0.16708014 - time (sec): 5.21 - samples/sec: 10028.21 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-18 22:41:45,039 epoch 6 - iter 288/723 - loss 0.16529748 - time (sec): 7.04 - samples/sec: 10064.56 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-18 22:41:46,864 epoch 6 - iter 360/723 - loss 0.16782442 - time (sec): 8.86 - samples/sec: 10167.58 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-18 22:41:48,558 epoch 6 - iter 432/723 - loss 0.16816204 - time (sec): 10.55 - samples/sec: 10059.28 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-18 22:41:50,301 epoch 6 - iter 504/723 - loss 0.16538144 - time (sec): 12.30 - samples/sec: 10045.86 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-18 22:41:52,379 epoch 6 - iter 576/723 - loss 0.16214967 - time (sec): 14.38 - samples/sec: 9747.49 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-18 22:41:53,863 epoch 6 - iter 648/723 - loss 0.16245142 - time (sec): 15.86 - samples/sec: 9935.83 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-18 22:41:55,341 epoch 6 - iter 720/723 - loss 0.16180617 - time (sec): 17.34 - samples/sec: 10132.02 - lr: 0.000013 - momentum: 0.000000
|
162 |
+
2023-10-18 22:41:55,395 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-18 22:41:55,395 EPOCH 6 done: loss 0.1620 - lr: 0.000013
|
164 |
+
2023-10-18 22:41:57,177 DEV : loss 0.19605979323387146 - f1-score (micro avg) 0.4388
|
165 |
+
2023-10-18 22:41:57,192 saving best model
|
166 |
+
2023-10-18 22:41:57,229 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-18 22:41:59,142 epoch 7 - iter 72/723 - loss 0.15681213 - time (sec): 1.91 - samples/sec: 9891.47 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2023-10-18 22:42:01,017 epoch 7 - iter 144/723 - loss 0.16028128 - time (sec): 3.79 - samples/sec: 9988.93 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-18 22:42:02,852 epoch 7 - iter 216/723 - loss 0.15737959 - time (sec): 5.62 - samples/sec: 9661.12 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-18 22:42:04,713 epoch 7 - iter 288/723 - loss 0.15461758 - time (sec): 7.48 - samples/sec: 9652.08 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-18 22:42:06,639 epoch 7 - iter 360/723 - loss 0.15562415 - time (sec): 9.41 - samples/sec: 9633.34 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-18 22:42:08,393 epoch 7 - iter 432/723 - loss 0.15601858 - time (sec): 11.16 - samples/sec: 9547.00 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-18 22:42:10,195 epoch 7 - iter 504/723 - loss 0.15634551 - time (sec): 12.97 - samples/sec: 9604.06 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-18 22:42:11,917 epoch 7 - iter 576/723 - loss 0.15605432 - time (sec): 14.69 - samples/sec: 9593.42 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-18 22:42:13,742 epoch 7 - iter 648/723 - loss 0.15788652 - time (sec): 16.51 - samples/sec: 9581.30 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-10-18 22:42:15,506 epoch 7 - iter 720/723 - loss 0.15585343 - time (sec): 18.28 - samples/sec: 9595.68 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-18 22:42:15,576 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-18 22:42:15,577 EPOCH 7 done: loss 0.1557 - lr: 0.000010
|
179 |
+
2023-10-18 22:42:17,340 DEV : loss 0.18651294708251953 - f1-score (micro avg) 0.4956
|
180 |
+
2023-10-18 22:42:17,355 saving best model
|
181 |
+
2023-10-18 22:42:17,391 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-18 22:42:19,153 epoch 8 - iter 72/723 - loss 0.14374815 - time (sec): 1.76 - samples/sec: 10673.65 - lr: 0.000010 - momentum: 0.000000
|
183 |
+
2023-10-18 22:42:20,917 epoch 8 - iter 144/723 - loss 0.14794415 - time (sec): 3.53 - samples/sec: 10127.24 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-18 22:42:22,804 epoch 8 - iter 216/723 - loss 0.14360194 - time (sec): 5.41 - samples/sec: 10006.46 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-18 22:42:25,061 epoch 8 - iter 288/723 - loss 0.14897909 - time (sec): 7.67 - samples/sec: 9460.82 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-18 22:42:26,865 epoch 8 - iter 360/723 - loss 0.14900531 - time (sec): 9.47 - samples/sec: 9464.33 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-10-18 22:42:28,695 epoch 8 - iter 432/723 - loss 0.15163665 - time (sec): 11.30 - samples/sec: 9484.24 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-18 22:42:30,451 epoch 8 - iter 504/723 - loss 0.15049384 - time (sec): 13.06 - samples/sec: 9426.82 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-18 22:42:32,371 epoch 8 - iter 576/723 - loss 0.15391483 - time (sec): 14.98 - samples/sec: 9457.19 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-10-18 22:42:34,142 epoch 8 - iter 648/723 - loss 0.15242765 - time (sec): 16.75 - samples/sec: 9459.25 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-18 22:42:35,955 epoch 8 - iter 720/723 - loss 0.15035247 - time (sec): 18.56 - samples/sec: 9469.65 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-18 22:42:36,018 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-18 22:42:36,018 EPOCH 8 done: loss 0.1509 - lr: 0.000007
|
194 |
+
2023-10-18 22:42:37,781 DEV : loss 0.1935824304819107 - f1-score (micro avg) 0.4684
|
195 |
+
2023-10-18 22:42:37,796 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-18 22:42:39,582 epoch 9 - iter 72/723 - loss 0.14444690 - time (sec): 1.78 - samples/sec: 10509.51 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-18 22:42:41,335 epoch 9 - iter 144/723 - loss 0.14963003 - time (sec): 3.54 - samples/sec: 10394.85 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-18 22:42:43,151 epoch 9 - iter 216/723 - loss 0.14951345 - time (sec): 5.35 - samples/sec: 10242.28 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-18 22:42:45,037 epoch 9 - iter 288/723 - loss 0.15149133 - time (sec): 7.24 - samples/sec: 10096.19 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-18 22:42:46,793 epoch 9 - iter 360/723 - loss 0.15160429 - time (sec): 9.00 - samples/sec: 9962.62 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-18 22:42:48,624 epoch 9 - iter 432/723 - loss 0.15049137 - time (sec): 10.83 - samples/sec: 9947.91 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-18 22:42:50,372 epoch 9 - iter 504/723 - loss 0.15011278 - time (sec): 12.58 - samples/sec: 9938.17 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-18 22:42:52,084 epoch 9 - iter 576/723 - loss 0.14872092 - time (sec): 14.29 - samples/sec: 9907.26 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-10-18 22:42:53,983 epoch 9 - iter 648/723 - loss 0.14660520 - time (sec): 16.19 - samples/sec: 9860.50 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-18 22:42:55,746 epoch 9 - iter 720/723 - loss 0.14745168 - time (sec): 17.95 - samples/sec: 9787.18 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-10-18 22:42:55,805 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-18 22:42:55,805 EPOCH 9 done: loss 0.1474 - lr: 0.000003
|
208 |
+
2023-10-18 22:42:57,583 DEV : loss 0.18601642549037933 - f1-score (micro avg) 0.4934
|
209 |
+
2023-10-18 22:42:57,598 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-18 22:42:59,400 epoch 10 - iter 72/723 - loss 0.14058348 - time (sec): 1.80 - samples/sec: 9685.58 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-18 22:43:01,619 epoch 10 - iter 144/723 - loss 0.12600196 - time (sec): 4.02 - samples/sec: 8799.97 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-18 22:43:03,414 epoch 10 - iter 216/723 - loss 0.13939819 - time (sec): 5.82 - samples/sec: 9148.79 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-18 22:43:05,189 epoch 10 - iter 288/723 - loss 0.14322160 - time (sec): 7.59 - samples/sec: 9259.14 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-18 22:43:07,030 epoch 10 - iter 360/723 - loss 0.14226797 - time (sec): 9.43 - samples/sec: 9420.73 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-18 22:43:08,799 epoch 10 - iter 432/723 - loss 0.14213505 - time (sec): 11.20 - samples/sec: 9483.74 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-18 22:43:10,537 epoch 10 - iter 504/723 - loss 0.14173779 - time (sec): 12.94 - samples/sec: 9470.36 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-18 22:43:12,404 epoch 10 - iter 576/723 - loss 0.14185805 - time (sec): 14.81 - samples/sec: 9513.49 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-18 22:43:14,188 epoch 10 - iter 648/723 - loss 0.14424631 - time (sec): 16.59 - samples/sec: 9497.25 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-18 22:43:16,019 epoch 10 - iter 720/723 - loss 0.14588941 - time (sec): 18.42 - samples/sec: 9528.18 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-18 22:43:16,079 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-18 22:43:16,080 EPOCH 10 done: loss 0.1456 - lr: 0.000000
|
222 |
+
2023-10-18 22:43:17,855 DEV : loss 0.1870052069425583 - f1-score (micro avg) 0.4892
|
223 |
+
2023-10-18 22:43:17,901 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-18 22:43:17,902 Loading model from best epoch ...
|
225 |
+
2023-10-18 22:43:17,984 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
226 |
+
2023-10-18 22:43:19,327
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.5152
|
229 |
+
- F-score (macro) 0.3532
|
230 |
+
- Accuracy 0.3613
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
LOC 0.5805 0.5983 0.5892 458
|
236 |
+
PER 0.6744 0.3610 0.4703 482
|
237 |
+
ORG 0.0000 0.0000 0.0000 69
|
238 |
+
|
239 |
+
micro avg 0.6137 0.4440 0.5152 1009
|
240 |
+
macro avg 0.4183 0.3197 0.3532 1009
|
241 |
+
weighted avg 0.5857 0.4440 0.4921 1009
|
242 |
+
|
243 |
+
2023-10-18 22:43:19,327 ----------------------------------------------------------------------------------------------------
|